The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

241-260hit(22683hit)

  • A Single-Inverter-Based True Random Number Generator with On-Chip Clock-Tuning-Based Entropy Calibration Circuit

    Xingyu WANG  Ruilin ZHANG  Hirofumi SHINOHARA  

     
    PAPER

      Pubricized:
    2023/07/21
      Vol:
    E107-A No:1
      Page(s):
    105-113

    This paper introduces an inverter-based true random number generator (I-TRNG). It uses a single CMOS inverter to amplify thermal noise multiple times. An adaptive calibration mechanism based on clock tuning provides robust operation across a wide range of supply voltage 0.5∼1.1V and temperature -40∼140°C. An 8-bit Von-Neumann post-processing circuit (VN8W) is implemented for maximum raw entropy extraction. In a 130nm CMOS technology, the I-TRNG entropy source only occupies 635μm2 and consumes 0.016pJ/raw-bit at 0.6V. The I-TRNG occupies 13406μm2, including the entropy source, adaptive calibration circuit, and post-processing circuit. The minimum energy consumption of the I-TRNG is 1.38pJ/bit at 0.5V, while passing all NIST 800-22 and 800-90B tests. Moreover, an equivalent 15-year life at 0.7V, 25°C is confirmed by an accelerated NBTI aging test.

  • Consideration of Integrated Low-Frequency Low-Pass Notch Filter Employing CCII Based Capacitance Multipliers

    Fujihiko MATSUMOTO  Hinano OHTSU  

     
    LETTER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    114-118

    In a field of biomedical engineering, not only low-pass filters for high frequency elimination but also notch filters for suppressing powerline interference are necessary to process low-frequency biosignals. For integration of low-frequency filters, chip implementation of large capacitances is major difficulty. As methods to enhance capacitances with small chip area, use of capacitance multipliers is effective. This letter describes design consideration of integrated low-frequency low-pass notch filter employing capacitance multipliers. Two main points are presented. Firstly, a new floating capacitance multiplier is proposed. Secondly, a technique to reduce the number of capacitance multipliers is proposed. By this technique, power consumption is reduced. The proposed techniques are applied a 3rd order low-pass notch filter. Simulation results show the effectiveness of the proposed techniques.

  • Construction of a Class of Linear Codes with at Most Three-Weight and the Application

    Wenhui LIU  Xiaoni DU  Xingbin QIAO  

     
    PAPER-Coding Theory

      Pubricized:
    2023/06/26
      Vol:
    E107-A No:1
      Page(s):
    119-124

    Linear codes are widely studied due to their important applications in secret sharing schemes, authentication codes, association schemes and strongly regular graphs, etc. In this paper, firstly, a class of three-weight linear codes is constructed by selecting a new defining set, whose weight distributions are determined by exponential sums. Results show that almost all the constructed codes are minimal and thus can be used to construct secret sharing schemes with sound access structures. Particularly, a class of projective two-weight linear codes is obtained and based on which a strongly regular graph with new parameters is designed.

  • Network Traffic Anomaly Detection: A Revisiting to Gaussian Process and Sparse Representation

    Yitu WANG  Takayuki NAKACHI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/06/27
      Vol:
    E107-A No:1
      Page(s):
    125-133

    Seen from the Internet Service Provider (ISP) side, network traffic monitoring is an indispensable part during network service provisioning, which facilitates maintaining the security and reliability of the communication networks. Among the numerous traffic conditions, we should pay extra attention to traffic anomaly, which significantly affects the network performance. With the advancement of Machine Learning (ML), data-driven traffic anomaly detection algorithms have established high reputation due to the high accuracy and generality. However, they are faced with challenges on inefficient traffic feature extraction and high computational complexity, especially when taking the evolving property of traffic process into consideration. In this paper, we proposed an online learning framework for traffic anomaly detection by embracing Gaussian Process (GP) and Sparse Representation (SR) in two steps: 1). To extract traffic features from past records, and better understand these features, we adopt GP with a special kernel, i.e., mixture of Gaussian in the spectral domain, which makes it possible to more accurately model the network traffic for improving the performance of traffic anomaly detection. 2). To combat noise and modeling error, observing the inherent self-similarity and periodicity properties of network traffic, we manually design a feature vector, based on which SR is adopted to perform robust binary classification. Finally, we demonstrate the superiority of the proposed framework in terms of detection accuracy through simulation.

  • Low-Complexity Digital Channelizer Design for Software Defined Radio

    Jinguang HAO  Gang WANG  Honggang WANG  Lili WANG  Xuefeng LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    134-140

    In software defined radio systems, a channelizer plays an important role in extracting the desired signals from a wideband signal. Compared to the conventional methods, the proposed scheme provides a solution to design a digital channelizer extracting the multiple subband signals at different center frequencies with low complexity. To do this, this paper formulates the problem as an optimization problem, which minimizes the required multiplications number subject to the constraints of the ripple in the passbands and the stopbands for single channel and combined multiple channels. In addition, a solution to solve the optimization problem is also presented and the corresponding structure is demonstrated. Simulation results show that the proposed scheme requires smaller number of the multiplications than other conventional methods. Moreover, unlike other methods, this structure can process signals with different bandwidths at different center frequencies simultaneously only by changing the status of the corresponding multiplexers without hardware reimplementation.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

  • High Precision Fingerprint Verification for Small Area Sensor Based on Deep Learning

    Nabilah SHABRINA  Dongju LI  Tsuyoshi ISSHIKI  

     
    PAPER-Biometrics

      Pubricized:
    2023/06/26
      Vol:
    E107-A No:1
      Page(s):
    157-168

    The fingerprint verification system is widely used in mobile devices because of fingerprint's distinctive features and ease of capture. Typically, mobile devices utilize small sensors, which have limited area, to capture fingerprint. Meanwhile, conventional fingerprint feature extraction methods need detailed fingerprint information, which is unsuitable for those small sensors. This paper proposes a novel fingerprint verification method for small area sensors based on deep learning. A systematic method combines deep convolutional neural network (DCNN) in a Siamese network for feature extraction and XGBoost for fingerprint similarity training. In addition, a padding technique also introduced to avoid wraparound error problem. Experimental results show that the method achieves an improved accuracy of 66.6% and 22.6% in the FingerPassDB7 and FVC2006DB1B dataset, respectively, compared to the existing methods.

  • Prime-Factor GFFT Architecture for Fast Frequency Domain Decoding of Cyclic Codes

    Yanyan CHANG  Wei ZHANG  Hao WANG  Lina SHI  Yanyan LIU  

     
    LETTER-Coding Theory

      Pubricized:
    2023/07/10
      Vol:
    E107-A No:1
      Page(s):
    174-177

    This letter introduces a prime-factor Galois field Fourier transform (PF-GFFT) architecture to frequency domain decoding (FDD) of cyclic codes. Firstly, a fast FDD scheme is designed which converts the original single longer Fourier transform to a multi-dimensional smaller transform. Furthermore, a ladder-shift architecture for PF-GFFT is explored to solve the rearrangement problem of input and output data. In this regard, PF-GFFT is considered as a lower order spectral calculation scheme, which has sufficient preponderance in reducing the computational complexity. Simulation results show that PF-GFFT compares favorably with the current general GFFT, simplified-GFFT (S-GFFT), and circular shifts-GFFT (CS-GFFT) algorithms in time-consuming cost, and is nearly an order of magnitude or smaller than them. The superiority is a benefit to improving the decoding speed and has potential application value in decoding cyclic codes with longer code lengths.

  • A Simple Design of Reconfigurable Intelligent Surface-Assisted Index Modulation: Generalized Reflected Phase Modulation

    Chaorong ZHANG  Yuyang PENG  Ming YUE  Fawaz AL-HAZEMI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/05/30
      Vol:
    E107-A No:1
      Page(s):
    182-186

    As a potential member of next generation wireless communications, the reconfigurable intelligent surface (RIS) can control the reflected elements to adjust the phase of the transmitted signal with less energy consumption. A novel RIS-assisted index modulation scheme is proposed in this paper, which is named the generalized reflected phase modulation (GRPM). In the GRPM, the transmitted bits are mapped into the reflected phase combination which is conveyed through the reflected elements on the RIS, and detected by the maximum likelihood (ML) detector. The performance analysis of the GRPM with the ML detector is presented, in which the closed form expression of pairwise error probability is derived. The simulation results show the bit error rate (BER) performance of GRPM by comparing with various RIS-assisted index modulation schemes in the conditions of various spectral efficiency and number of antennas.

  • Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems

    Ryuta SHIRAKI  Yojiro MORI  Hiroshi HASEGAWA  

     
    PAPER

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    39-48

    We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.

  • D2EcoSys: Decentralized Digital Twin EcoSystem Empower Co-Creation City-Level Digital Twins Open Access

    Kenji KANAI  Hidehiro KANEMITSU  Taku YAMAZAKI  Shintaro MORI  Aram MINE  Sumiko MIYATA  Hironobu IMAMURA  Hidenori NAKAZATO  

     
    INVITED PAPER

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    50-62

    A city-level digital twin is a critical enabling technology to construct a smart city that helps improve citizens' living conditions and quality of life. Currently, research and development regarding the digital replica city are pursued worldwide. However, many research projects only focus on creating the 3D city model. A mechanism to involve key players, such as data providers, service providers, and application developers, is essential for constructing the digital replica city and producing various city applications. Based on this motivation, the authors of this paper are pursuing a research project, namely Decentralized Digital Twin EcoSystem (D2EcoSys), to create an ecosystem to advance (and self-grow) the digital replica city regarding time and space directions, city services, and values. This paper introduces an overview of the D2EcoSys project: vision, problem statement, and approach. In addition, the paper discusses the recent research results regarding networking technologies and demonstrates an early testbed built in the Kashiwa-no-ha smart city.

  • Transmission Performance Evaluation of Local 5G Downlink Data Channel in SU-MIMO System under Outdoor Environments

    Hiroki URASAWA  Hayato SOYA  Kazuhiro YAMAGUCHI  Hideaki MATSUE  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    63-73

    We evaluated the transmission performance, including received power and transmission throughput characteristics, in 4×4 single-user multiple-input multiple-output (SU-MIMO) transmission for synchronous time division duplex (TDD) and downlink data channels in comparison with single-input single-output (SISO) transmission in an environment where a local 5G wireless base station was installed on the roof of a research building at our university. Accordingly, for the received power characteristics, the difference between the simulation value, which was based on the ray tracing method, and the experimental value at 32 points in the area was within a maximum difference of approximately 10 dB, and sufficient compliance was obtained. Regarding the transmission throughput versus received power characteristics, after showing a simulation method for evaluating throughput characteristics in MIMO, we compared the results with experimental results. The cumulative distribution function (CDF) of the transmission throughput shows that, at a CDF of 50%, in SISO transmission, the simulated value is approximately 115Mbps, and the experimental value is 105Mbps, within a difference of approximately 10Mbps. By contrast, in MIMO transmission, the simulation value is 380Mbps, and the experimental value is approximately 420Mbps, which is a difference of approximately 40Mbps. It was shown that the received power and transmission throughput characteristics can be predicted with sufficient accuracy by obtaining the delay profile and the system model at each reception point using the both ray tracing and MIMO simulation methods in actual environments.

  • Adaptive K-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR

    Arif DATAESATU  Kosuke SANADA  Hiroyuki HATANO  Kazuo MORI  Pisit BOONSRIMUANG  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    74-84

    The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.

  • Pseudorandom Binary Sequences: Quality Measures and Number-Theoretic Constructions

    Arne WINTERHOF  

     
    INVITED PAPER-Cryptography and Information Security

      Pubricized:
    2023/05/31
      Vol:
    E106-A No:12
      Page(s):
    1452-1460

    In this survey we summarize properties of pseudorandomness and non-randomness of some number-theoretic sequences and present results on their behaviour under the following measures of pseudorandomness: balance, linear complexity, correlation measure of order k, expansion complexity and 2-adic complexity. The number-theoretic sequences are the Legendre sequence and the two-prime generator, the Thue-Morse sequence and its sub-sequence along squares, and the prime omega sequences for integers and polynomials.

  • Logic Functions of Polyphase Complementary Sets

    Shinya MATSUFUJI  Sho KURODA  Yuta IDA  Takahiro MATSUMOTO  Naoki SUEHIRO  

     
    PAPER-Information Theory

      Pubricized:
    2023/09/05
      Vol:
    E106-A No:12
      Page(s):
    1475-1483

    A set consisting of K subsets of Msequences of length L is called a complementary sequence set expressed by A(L, K, M), if the sum of the out-of-phase aperiodic autocorrelation functions of the sequences within a subset and the sum of the cross-correlation functions between the corresponding sequences in any two subsets are zero at any phase shift. Suehiro et al. first proposed complementary set A(Nn, N, N) where N and n are positive integers greater than or equal to 2. Recently, several complementary sets related to Suehiro's construction, such as N being a power of a prime number, have been proposed. However, there is no discussion about their inclusion relation and properties of sequences. This paper rigorously formulates and investigates the (generalized) logic functions of the complementary sets by Suehiro et al. in order to understand its construction method and the properties of sequences. As a result, it is shown that there exists a case where the logic function is bent when n is even. This means that each series can be guaranteed to have pseudo-random properties to some extent. In other words, it means that the complementary set can be successfully applied to communication on fluctuating channels. The logic functions also allow simplification of sequence generators and their matched filters.

  • Construction of Two Kinds of Optimal Wide-Gap Frequency-Hopping Sequence Sets

    Ting WANG  Xianhua NIU  Yaoxuan WANG  Jianhong ZHOU  Ling XIONG  

     
    PAPER-Information Theory

      Pubricized:
    2023/08/16
      Vol:
    E106-A No:12
      Page(s):
    1484-1492

    The frequency hopping sequence plays a crucial role in determining the system's anti-jamming performance, in frequency hopping communication systems. If the adjacent frequency points of FHS can ensure wide-gap, it will better improve the anti-interference capability of the FH communication system. Moreover, if the period of the sequence is expanded, and each frequency point does not repeat in the same sequence, the system's ability to resist electromagnetic interference will be enhanced. And a one-coincidence frequency-hopping sequence set consists of FHSs with maximum Hamming autocorrelation 0 and cross-correlation 1. In this paper, we present two constructions of wide-gap frequency-hopping sequence sets. One construction is a new class of wide-gap one-coincidence FHS set, and the other is a WGFHS set with long period. These two WGFHS sets are optimal with respect to WG-Peng-Fan bound. And each sequence of these WGFHS sets is optimal with respect to WG-Lempel-Greenberger bound.

  • A Unified Software and Hardware Platform for Machine Learning Aided Wireless Systems

    Dody ICHWANA PUTRA  Muhammad HARRY BINTANG PRATAMA  Ryotaro ISSHIKI  Yuhei NAGAO  Leonardo LANANTE JR  Hiroshi OCHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/08/22
      Vol:
    E106-A No:12
      Page(s):
    1493-1503

    This paper presents a unified software and hardware wireless AI platform (USHWAP) for developing and evaluating machine learning in wireless systems. The platform integrates multi-software development such as MATLAB and Python with hardware platforms like FPGA and SDR, allowing for flexible and scalable device and edge computing application development. The USHWAP is implemented and validated using FPGAs and SDRs. Wireless signal classification, wireless LAN sensing, and rate adaptation are used as examples to showcase the platform's capabilities. The platform enables versatile development, including software simulation and real-time hardware implementation, offering flexibility and scalability for multiple applications. It is intended to be used by wireless-AI researchers to develop and evaluate intelligent algorithms in a laboratory environment.

  • A New Transformation for Costas Arrays

    Ali ARDALANI  Alexander POTT  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/08/24
      Vol:
    E106-A No:12
      Page(s):
    1504-1510

    A Costas array of size n is an n × n binary matrix such that no two of the $inom{n}{2}$ line segments connecting 1s have the same length and slope. Costas arrays are found by finite-field-based construction methods and their manipulations (systematically constructed) and exhaustive search methods. The arrays found exhaustively, which are of completely unknown origin, are called sporadic. Most studies in Costas arrays have tended to focus on systematically constructed Costas arrays rather than sporadic ones, which reveals the hardness of examining a link between systematically constructed Costas arrays and sporadic ones. This paper introduces a new transformation that preserves the Costas property for some Costas arrays, but not all. We observed that this transformation could transform some systematically constructed Costas arrays to sporadic ones and vice versa. Moreover, we introduce a family of arrays with the property that the auto-correlation of each array and the cross-correlation between any two arrays in this family is bounded above by two.

  • Period and Some Distribution Properties of a Nonlinear Filter Generator with Dynamic Mapping

    Yuta KODERA  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2023/08/08
      Vol:
    E106-A No:12
      Page(s):
    1511-1515

    This paper focuses on a pseudorandom number generator called an NTU sequence for use in cryptography. The generator is defined with an m-sequence and Legendre symbol over an odd characteristic field. Since the previous researches have shown that the generator has maximum complexity; however, its bit distribution property is not balanced. To address this drawback, the author introduces dynamic mapping for the generation process and evaluates the period and some distribution properties in this paper.

  • New Binary Sequences with Low Odd Correlation via Interleaving Technique

    Bing LIU  Rong LUO  Yong WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/08/08
      Vol:
    E106-A No:12
      Page(s):
    1516-1520

    Even correlation and odd correlation of sequences are two kinds of measures for their similarities. Both kinds of correlation have important applications in communication and radar. Compared with vast knowledge on sequences with good even correlation, relatively little is known on sequences with preferable odd correlation. In this paper, a generic construction of sequences with low odd correlation is proposed via interleaving technique. Notably, it can generate new sets of binary sequences with optimal odd correlation asymptotically meeting the Sarwate bound.

241-260hit(22683hit)