The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22735hit)

141-160hit(22735hit)

  • Power Peak Load Forecasting Based on Deep Time Series Analysis Method Open Access

    Ying-Chang HUNG  Duen-Ren LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/03/21
      Vol:
    E107-D No:7
      Page(s):
    845-856

    The prediction of peak power load is a critical factor directly impacting the stability of power supply, characterized significantly by its time series nature and intricate ties to the seasonal patterns in electricity usage. Despite its crucial importance, the current landscape of power peak load forecasting remains a multifaceted challenge in the field. This study aims to contribute to this domain by proposing a method that leverages a combination of three primary models - the GRU model, self-attention mechanism, and Transformer mechanism - to forecast peak power load. To contextualize this research within the ongoing discourse, it’s essential to consider the evolving methodologies and advancements in power peak load forecasting. By delving into additional references addressing the complexities and current state of the power peak load forecasting problem, this study aims to build upon the existing knowledge base and offer insights into contemporary challenges and strategies adopted within the field. Data preprocessing in this study involves comprehensive cleaning, standardization, and the design of relevant functions to ensure robustness in the predictive modeling process. Additionally, recognizing the necessity to capture temporal changes effectively, this research incorporates features such as “Weekly Moving Average” and “Monthly Moving Average” into the dataset. To evaluate the proposed methodologies comprehensively, this study conducts comparative analyses with established models such as LSTM, Self-attention network, Transformer, ARIMA, and SVR. The outcomes reveal that the models proposed in this study exhibit superior predictive performance compared to these established models, showcasing their effectiveness in accurately forecasting electricity consumption. The significance of this research lies in two primary contributions. Firstly, it introduces an innovative prediction method combining the GRU model, self-attention mechanism, and Transformer mechanism, aligning with the contemporary evolution of predictive modeling techniques in the field. Secondly, it introduces and emphasizes the utility of “Weekly Moving Average” and “Monthly Moving Average” methodologies, crucial in effectively capturing and interpreting seasonal variations within the dataset. By incorporating these features, this study enhances the model’s ability to account for seasonal influencing factors, thereby significantly improving the accuracy of peak power load forecasting. This contribution aligns with the ongoing efforts to refine forecasting methodologies and addresses the pertinent challenges within power peak load forecasting.

  • Conflict Management Method Based on a New Belief Divergence in Evidence Theory Open Access

    Zhu YIN  Xiaojian MA  Hang WANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2024/03/01
      Vol:
    E107-D No:7
      Page(s):
    857-868

    Highly conflicting evidence that may lead to the counter-intuitive results is one of the challenges for information fusion in Dempster-Shafer evidence theory. To deal with this issue, evidence conflict is investigated based on belief divergence measuring the discrepancy between evidence. In this paper, the pignistic probability transform belief χ2 divergence, named as BBχ2 divergence, is proposed. By introducing the pignistic probability transform, the proposed BBχ2 divergence can accurately quantify the difference between evidence with the consideration of multi-element sets. Compared with a few belief divergences, the novel divergence has more precision. Based on this advantageous divergence, a new multi-source information fusion method is devised. The proposed method considers both credibility weights and information volume weights to determine the overall weight of each evidence. Eventually, the proposed method is applied in target recognition and fault diagnosis, in which comparative analysis indicates that the proposed method can realize the highest accuracy for managing evidence conflict.

  • Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv7-Tiny Open Access

    Min GAO  Gaohua CHEN  Jiaxin GU  Chunmei ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/03/19
      Vol:
    E107-D No:7
      Page(s):
    878-889

    Wearing a mask correctly is an effective method to prevent respiratory infectious diseases. Correct mask use is a reliable approach for preventing contagious respiratory infections. However, when dealing with mask-wearing in some complex settings, the detection accuracy still needs to be enhanced. The technique for mask-wearing detection based on YOLOv7-Tiny is enhanced in this research. Distribution Shifting Convolutions (DSConv) based on YOLOv7-tiny are used instead of the 3×3 convolution in the original model to simplify computation and increase detection precision. To decrease the loss of coordinate regression and enhance the detection performance, we adopt the loss function Intersection over Union with Minimum Points Distance (MPDIoU) instead of Complete Intersection over Union (CIoU) in the original model. The model is introduced with the GSConv and VoVGSCSP modules, recognizing the model’s mobility. The P6 detection layer has been designed to increase detection precision for tiny targets in challenging environments and decrease missed and false positive detection rates. The robustness of the model is increased further by creating and marking a mask-wearing data set in a multi environment that uses Mixup and Mosaic technologies for data augmentation. The efficiency of the model is validated in this research using comparison and ablation experiments on the mask dataset. The results demonstrate that when compared to YOLOv7-tiny, the precision of the enhanced detection algorithm is improved by 5.4%, Recall by 1.8%, mAP@.5 by 3%, mAP@.5:.95 by 1.7%, while the FLOPs is decreased by 8.5G. Therefore, the improved detection algorithm realizes more real-time and accurate mask-wearing detection tasks.

  • Channel Pruning via Improved Grey Wolf Optimizer Pruner Open Access

    Xueying WANG  Yuan HUANG  Xin LONG  Ziji MA  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/03/07
      Vol:
    E107-D No:7
      Page(s):
    894-897

    In recent years, the increasing complexity of deep network structures has hindered their application in small resource constrained hardware. Therefore, we urgently need to compress and accelerate deep network models. Channel pruning is an effective method to compress deep neural networks. However, most existing channel pruning methods are prone to falling into local optima. In this paper, we propose a channel pruning method via Improved Grey Wolf Optimizer Pruner which called IGWO-Pruner to prune redundant channels of convolutional neural networks. It identifies pruning ratio of each layer by using Improved Grey Wolf algorithm, and then fine-tuning the new pruned network model. In experimental section, we evaluate the proposed method in CIFAR datasets and ILSVRC-2012 with several classical networks, including VGGNet, GoogLeNet and ResNet-18/34/56/152, and experimental results demonstrate the proposed method is able to prune a large number of redundant channels and parameters with rare performance loss.

  • Real-Time Safety Driving Advisory System Utilizing a Vision-Based Driving Monitoring Sensor Open Access

    Masahiro TADA  Masayuki NISHIDA  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2024/03/15
      Vol:
    E107-D No:7
      Page(s):
    901-907

    In this study, we use a vision-based driving monitoring sensor to track drivers’ visual scanning behavior, a key factor for preventing traffic accidents. Our system evaluates driver’s behaviors by referencing the safety knowledge of professional driving instructors, and provides real-time voice-guided safety advice to encourage safer driving. Our system’s evaluation of safe driving behaviors matched the instructor’s evaluation with accuracy over 80%.

  • Operational Resilience of Network Considering Common-Cause Failures Open Access

    Tetsushi YUGE  Yasumasa SAGAWA  Natsumi TAKAHASHI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    855-863

    This paper discusses the resilience of networks based on graph theory and stochastic process. The electric power network where edges may fail simultaneously and the performance of the network is measured by the ratio of connected nodes is supposed for the target network. For the restoration, under the constraint that the resources are limited, the failed edges are repaired one by one, and the order of the repair for several failed edges is determined with the priority to the edge that the amount of increasing system performance is the largest after the completion of repair. Two types of resilience are discussed, one is resilience in the recovery stage according to the conventional definition of resilience and the other is steady state operational resilience considering the long-term operation in which the network state changes stochastically. The second represents a comprehensive capacity of resilience for a system and is analytically derived by Markov analysis. We assume that the large-scale disruption occurs due to the simultaneous failure of edges caused by the common cause failures in the analysis. Marshall-Olkin type shock model and α factor method are incorporated to model the common cause failures. Then two resilience measures, “operational resilience” and “operational resilience in recovery stage” are proposed. We also propose approximation methods to obtain these two operational resilience measures for complex networks.

  • FA-YOLO: A High-Precision and Efficient Method for Fabric Defect Detection in Textile Industry Open Access

    Kai YU  Wentao LYU  Xuyi YU  Qing GUO  Weiqiang XU  Lu ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:6
      Page(s):
    890-898

    The automatic defect detection for fabric images is an essential mission in textile industry. However, there are some inherent difficulties in the detection of fabric images, such as complexity of the background and the highly uneven scales of defects. Moreover, the trade-off between accuracy and speed should be considered in real applications. To address these problems, we propose a novel model based on YOLOv4 to detect defects in fabric images, called Feature Augmentation YOLO (FA-YOLO). In terms of network structure, FA-YOLO adds an additional detection head to improve the detection ability of small defects and builds a powerful Neck structure to enhance feature fusion. First, to reduce information loss during feature fusion, we perform the residual feature augmentation (RFA) on the features after dimensionality reduction by using 1×1 convolution. Afterward, the attention module (SimAM) is embedded into the locations with rich features to improve the adaptation ability to complex backgrounds. Adaptive spatial feature fusion (ASFF) is also applied to output of the Neck to filter inconsistencies across layers. Finally, the cross-stage partial (CSP) structure is introduced for optimization. Experimental results based on three real industrial datasets, including Tianchi fabric dataset (72.5% mAP), ZJU-Leaper fabric dataset (0.714 of average F1-score) and NEU-DET steel dataset (77.2% mAP), demonstrate the proposed FA-YOLO achieves competitive results compared to other state-of-the-art (SoTA) methods.

  • Dynamic Limited Variable Step-Size Algorithm Based on the MSD Variation Cost Function Open Access

    Yufei HAN  Jiaye XIE  Yibo LI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    919-922

    The steady-state and convergence performances are important indicators to evaluate adaptive algorithms. The step-size affects these two important indicators directly. Many relevant scholars have also proposed some variable step-size adaptive algorithms for improving performance. However, there are still some problems in these existing variable step-size adaptive algorithms, such as the insufficient theoretical analysis, the imbalanced performance and the unachievable parameter. These problems influence the actual performance of some algorithms greatly. Therefore, we intend to further explore an inherent relationship between the key performance and the step-size in this paper. The variation of mean square deviation (MSD) is adopted as the cost function. Based on some theoretical analyses and derivations, a novel variable step-size algorithm with a dynamic limited function (DLF) was proposed. At the same time, the sufficient theoretical analysis is conducted on the weight deviation and the convergence stability. The proposed algorithm is also tested with some typical algorithms in many different environments. Both the theoretical analysis and the experimental result all have verified that the proposed algorithm equips a superior performance.

  • Secrecy Outage Probability and Secrecy Diversity Order of Alamouti STBC with Decision Feedback Detection over Time-Selective Fading Channels Open Access

    Gyulim KIM  Hoojin LEE  Xinrong LI  Seong Ho CHAE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:6
      Page(s):
    923-927

    This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.

  • An Adaptively Biased OFDM Based on Hartley Transform for Visible Light Communication Systems Open Access

    Menglong WU  Yongfa XIE  Yongchao SHI  Jianwen ZHANG  Tianao YAO  Wenkai LIU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:6
      Page(s):
    928-931

    Direct-current biased optical orthogonal frequency division multiplexing (DCO-OFDM) converts bipolar OFDM signals into unipolar non-negative signals by introducing a high DC bias, which satisfies the requirement that the signal transmitted by intensity modulated/direct detection (IM/DD) must be positive. However, the high DC bias results in low power efficiency of DCO-OFDM. An adaptively biased optical OFDM was proposed, which could be designed with different biases according to the signal amplitude to improve power efficiency in this letter. The adaptive bias does not need to be taken off deliberately at the receiver, and the interference caused by the adaptive bias will only be placed on the reserved subcarriers, which will not affect the effective information. Moreover, the proposed OFDM uses Hartley transform instead of Fourier transform used in conventional optical OFDM, which makes this OFDM have low computational complexity and high spectral efficiency. The simulation results show that the normalized optical bit energy to noise power ratio (Eb(opt)/N0) required by the proposed OFDM at the bit error rate (BER) of 10-3 is, on average, 7.5 dB and 3.4 dB lower than that of DCO-OFDM and superimposed asymmetrically clipped optical OFDM (ACO-OFDM), respectively.

  • Performance of the Typical User in RIS-Assisted Indoor Ultra Dense Networks Open Access

    Sinh Cong LAM  Bach Hung LUU  Kumbesan SANDRASEGARAN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E107-A No:6
      Page(s):
    932-935

    Cooperative Communication is one of the most effective techniques to improve the desired signal quality of the typical user. This paper studies an indoor cellular network system that deploys the Reconfigurable Intelligent Surfaces (RIS) at the position of BSs to enable the cooperative features. To evaluate the network performance, the coverage probability expression of the typical user in the indoor wireless environment with presence of walls and effects of Rayleigh fading is derived. The analytical results shows that the RIS-assisted system outperforms the regular one in terms of coverage probability.

  • Physical Layer Security Enhancement for mmWave System with Multiple RISs and Imperfect CSI Open Access

    Qingqing TU  Zheng DONG  Xianbing ZOU  Ning WEI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:6
      Page(s):
    430-445

    Despite the appealing advantages of reconfigurable intelligent surfaces (RIS) aided mmWave communications, there remain practical issues that need to be addressed before the large-scale deployment of RISs in future wireless networks. In this study, we jointly consider the non-neglectable practical issues in a multi-RIS-aided mmWave system, which can significantly affect the secrecy performance, including the high computational complexity, imperfect channel state information (CSI), and finite resolution of phase shifters. To solve this non-convex challenging stochastic optimization problem, we propose a robust and low-complexity algorithm to maximize the achievable secrete rate. Specially, by combining the benefits of fractional programming and the stochastic successive convex approximation techniques, we transform the joint optimization problem into some convex ones and solve them sub-optimally. The theoretical analysis and simulation results demonstrate that the proposed algorithms could mitigate the joint negative effects of practical issues and yielded a tradeoff between secure performance and complexity/overhead outperforming non-robust benchmarks, which increases the robustness and flexibility of multiple RIS deployments in future wireless networks.

  • A 0.13 mJ/Prediction CIFAR-100 Fully Synthesizable Raster-Scan-Based Wired-Logic Processor in 16-nm FPGA Open Access

    Dongzhu LI  Zhijie ZHAN  Rei SUMIKAWA  Mototsugu HAMADA  Atsutake KOSUGE  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-C No:6
      Page(s):
    155-162

    A 0.13mJ/prediction with 68.6% accuracy wired-logic deep neural network (DNN) processor is developed in a single 16-nm field-programmable gate array (FPGA) chip. Compared with conventional von-Neumann architecture DNN processors, the energy efficiency is greatly improved by eliminating DRAM/BRAM access. A technical challenge for conventional wired-logic processors is the large amount of hardware resources required for implementing large-scale neural networks. To implement a large-scale convolutional neural network (CNN) into a single FPGA chip, two technologies are introduced: (1) a sparse neural network known as a non-linear neural network (NNN), and (2) a newly developed raster-scan wired-logic architecture. Furthermore, a novel high-level synthesis (HLS) technique for wired-logic processor is proposed. The proposed HLS technique enables the automatic generation of two key components: (1) Verilog-hardware description language (HDL) code for a raster-scan-based wired-logic processor and (2) test bench code for conducting equivalence checking. The automated process significantly mitigates the time and effort required for implementation and debugging. Compared with the state-of-the-art FPGA-based processor, 238 times better energy efficiency is achieved with only a slight decrease in accuracy on the CIFAR-100 task. In addition, 7 times better energy efficiency is achieved compared with the state-of-the-art network-optimized application-specific integrated circuit (ASIC).

  • Simulation of Scalar-Mode Optically Pumped Magnetometers to Search Optimal Operating Conditions Open Access

    Yosuke ITO  Tatsuya GOTO  Takuma HORI  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    164-170

    In recent years, measuring biomagnetic fields in the Earth’s field by differential measurements of scalar-mode OPMs have been actively attempted. In this study, the sensitivity of the scalar-mode OPMs under the geomagnetic environment in the laboratory was studied by numerical simulation. Although the noise level of the scalar-mode OPM in the laboratory environment was calculated to be 104 pT/$\sqrt{\mathrm{Hz}}$, the noise levels using the first-order and the second-order differential configurations were found to be 529 fT/cm/$\sqrt{\mathrm{Hz}}$ and 17.2 fT/cm2/$\sqrt{\mathrm{Hz}}$, respectively. This result indicated that scalar-mode OPMs can measure very weak magnetic fields such as MEG without high-performance magnetic shield roomns. We also studied the operating conditions by varying repetition frequency and temperature. We found that scalar-mode OPMs have an upper limit of repetition frequency and temperature, and that the repetition frequency should be set below 4 kHz and the temperature should be set below 120°C.

  • Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles Open Access

    Takako MIZOGUCHI  Akihiko KANDORI  Keiji ENPUKU  

     
    PAPER

      Pubricized:
    2023/11/21
      Vol:
    E107-C No:6
      Page(s):
    183-189

    Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.

  • Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs Open Access

    Yuki KAWAKAMI  Shun TAKAHASHI  Kazuhisa SETO  Takashi HORIYAMA  Yuki KOBAYASHI  Yuya HIGASHIKAWA  Naoki KATOH  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/02/16
      Vol:
    E107-D No:6
      Page(s):
    732-740

    We explore the maximum total number of edge crossings and the maximum geometric thickness of the Euclidean minimum-weight (k, ℓ)-tight graph on a planar point set P. In this paper, we show that (10/7-ε)|P| and (11/6-ε)|P| are lower bounds for the maximum total number of edge crossings for any ε > 0 in cases (k,ℓ)=(2,3) and (2,2), respectively. We also show that the lower bound for the maximum geometric thickness is 3 for both cases. In the proofs, we apply the method of arranging isomorphic units regularly. While the method is developed for the proof in case (k,ℓ)=(2,3), it also works for different ℓ.

  • Dataset of Functionally Equivalent Java Methods and Its Application to Evaluating Clone Detection Tools Open Access

    Yoshiki HIGO  

     
    PAPER-Software System

      Pubricized:
    2024/02/21
      Vol:
    E107-D No:6
      Page(s):
    751-760

    Modern high-level programming languages have a wide variety of grammar and can implement the required functionality in different ways. The authors believe that a large amount of code that implements the same functionality in different ways exists even in open source software where the source code is publicly available, and that by collecting such code, a useful data set can be constructed for various studies in software engineering. In this study, we construct a dataset of pairs of Java methods that have the same functionality but different structures from approximately 314 million lines of source code. To construct this dataset, the authors used an automated test generation technique, EvoSuite. Test cases generated by automated test generation techniques have the property that the test cases always succeed. In constructing the dataset, using this property, test cases generated from two methods were executed against each other to automatically determine whether the behavior of the two methods is the same to some extent. Pairs of methods for which all test cases succeeded in cross-running test cases are manually investigated to be functionally equivalent. This paper also reports the results of an accuracy evaluation of code clone detection tools using the constructed dataset. The purpose of this evaluation is assessing how accurately code clone detection tools could find the functionally equivalent methods, not assessing the accuracy of detecting ordinary clones. The constructed dataset is available at github (https://github.com/YoshikiHigo/FEMPDataset).

  • MuSRGM: A Genetic Algorithm-Based Dynamic Combinatorial Deep Learning Model for Software Reliability Engineering Open Access

    Ning FU  Duksan RYU  Suntae KIM  

     
    PAPER-Software Engineering

      Pubricized:
    2024/02/06
      Vol:
    E107-D No:6
      Page(s):
    761-771

    In the software testing phase, software reliability growth models (SRGMs) are commonly used to evaluate the reliability of software systems. Traditional SRGMs are restricted by their assumption of a continuous growth pattern for the failure detection rate (FDR) throughout the testing phase. However, the assumption is compromised by Change-Point phenomena, where FDR fluctuations stem from variations in testing personnel or procedural modifications, leading to reduced prediction accuracy and compromised software reliability assessments. Therefore, the objective of this study is to improve software reliability prediction using a novel approach that combines genetic algorithm (GA) and deep learning-based SRGMs to account for the Change-point phenomenon. The proposed approach uses a GA to dynamically combine activation functions from various deep learning-based SRGMs into a new mutated SRGM called MuSRGM. The MuSRGM captures the advantages of both concave and S-shaped SRGMs and is better suited to capture the change-point phenomenon during testing and more accurately reflect actual testing situations. Additionally, failure data is treated as a time series and analyzed using a combination of Long Short-Term Memory (LSTM) and Attention mechanisms. To assess the performance of MuSRGM, we conducted experiments on three distinct failure datasets. The results indicate that MuSRGM outperformed the baseline method, exhibiting low prediction error (MSE) on all three datasets. Furthermore, MuSRGM demonstrated remarkable generalization ability on these datasets, remaining unaffected by uneven data distribution. Therefore, MuSRGM represents a highly promising advanced solution that can provide increased accuracy and applicability for software reliability assessment during the testing phase.

  • A Ranking Information Based Network for Facial Beauty Prediction Open Access

    Haochen LYU  Jianjun LI  Yin YE  Chin-Chen CHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/01/26
      Vol:
    E107-D No:6
      Page(s):
    772-780

    The purpose of Facial Beauty Prediction (FBP) is to automatically assess facial attractiveness based on human aesthetics. Most neural network-based prediction methods do not consider the ranking information in the task. For scoring tasks like facial beauty prediction, there is abundant ranking information both between images and within images. Reasonable utilization of these information during training can greatly improve the performance of the model. In this paper, we propose a novel end-to-end Convolutional Neural Network (CNN) model based on ranking information of images, incorporating a Rank Module and an Adaptive Weight Module. We also design pairwise ranking loss functions to fully leverage the ranking information of images. Considering training efficiency and model inference capability, we choose ResNet-50 as the backbone network. We conduct experiments on the SCUT-FBP5500 dataset and the results show that our model achieves a new state-of-the-art performance. Furthermore, ablation experiments show that our approach greatly contributes to improving the model performance. Finally, the Rank Module with the corresponding ranking loss is plug-and-play and can be extended to any CNN model and any task with ranking information. Code is available at https://github.com/nehcoah/Rank-Info-Net.

  • How the Author’s Group Came Up with Ideas in Analog/Mixed-Signal Circuit and System Area Open Access

    Haruo KOBAYASHI  

     
    INVITED PAPER

      Pubricized:
    2023/12/07
      Vol:
    E107-A No:5
      Page(s):
    681-699

    This article reviews the author’s group research achievements in analog/mixed-signal circuit and system area with introduction of how they came up with the ideas. Analog/mixed-signal circuits and systems have to be designed as well-balanced in many aspects, and coming up ideas needs some experiences and discussions with researchers. It is also heavily dependent on researchers. Here, the author’s group own experiences are presented as well as their research motivations.

141-160hit(22735hit)