The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

121-140hit(22683hit)

  • Traffic Reduction for Speculative Video Transmission in Cloud Gaming Systems Open Access

    Takumasa ISHIOKA  Tatsuya FUKUI  Toshihito FUJIWARA  Satoshi NARIKAWA  Takuya FUJIHASHI  Shunsuke SARUWATARI  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E107-B No:5
      Page(s):
    408-418

    Cloud gaming systems allow users to play games that require high-performance computational capability on their mobile devices at any location. However, playing games through cloud gaming systems increases the Round-Trip Time (RTT) due to increased network delay. To simulate a local gaming experience for cloud users, we must minimize RTTs, which include network delays. The speculative video transmission pre-generates and encodes video frames corresponding to all possible user inputs and sends them to the user before the user’s input. The speculative video transmission mitigates the network, whereas a simple solution significantly increases the video traffic. This paper proposes tile-wise delta detection for traffic reduction of speculative video transmission. More specifically, the proposed method determines a reference video frame from the generated video frames and divides the reference video frame into multiple tiles. We calculate the similarity between each tile of the reference video frame and other video frames based on a hash function. Based on calculated similarity, we determine redundant tiles and do not transmit them to reduce traffic volume in minimal processing time without implementing a high compression ratio video compression technique. Evaluations using commercial games showed that the proposed method reduced 40-50% in traffic volume when the SSIM index was around 0.98 in certain genres, compared with the speculative video transmission method. Furthermore, to evaluate the feasibility of the proposed method, we investigated the effectiveness of network delay reduction with existing computational capability and the requirements in the future. As a result, we found that the proposed scheme may mitigate network delay by one to two frames, even with existing computational capability under limited conditions.

  • PopDCN: Popularity-Aware Dynamic Clustering Scheme for Distributed Caching in ICN Open Access

    Mikiya YOSHIDA  Yusuke ITO  Yurino SATO  Hiroyuki KOGA  

     
    PAPER-Network

      Vol:
    E107-B No:5
      Page(s):
    398-407

    Information-centric networking (ICN) provides low-latency content delivery with in-network caching, but delivery latency depends on cache distance from consumers. To reduce delivery latency, a scheme to cluster domains and retain the main popular content in each cluster with a cache distribution range has been proposed, which enables consumers to retrieve content from neighboring clusters/caches. However, when the distribution of content popularity changes, all content caches may not be distributed adequately in a cluster, so consumers cannot retrieve them from nearby caches. We therefore propose a dynamic clustering scheme to adjust the cache distribution range in accordance with the change in content popularity and evaluate the effectiveness of the proposed scheme through simulation.

  • High-Throughput Exact Matching Implementation on FPGA with Shared Rule Tables among Parallel Pipelines Open Access

    Xiaoyong SONG  Zhichuan GUO  Xinshuo WANG  Mangu SONG  

     
    PAPER-Network System

      Vol:
    E107-B No:5
      Page(s):
    387-397

    In software defined network (SDN), packet processing is commonly implemented using match-action model, where packets are processed based on matched actions in match action table. Due to the limited FPGA on-board resources, it is an important challenge to achieve large-scale high throughput based on exact matching (EM), while solving hash conflicts and out-of-order problems. To address these issues, this study proposed an FPGA-based EM table that leverages shared rule tables across multiple pipelines to eliminate memory replication and enhance overall throughput. An out-of-order reordering function is used to ensure packet sequencing within the pipelines. Moreover, to handle collisions and increase load factor of hash table, multiple hash table blocks are combined and an auxiliary CAM-based EM table is integrated in each pipeline. To the best of our knowledge, this is the first time that the proposed design considers the recovery of out-of-order operations in multi-channel EM table for high-speed network packets processing application. Furthermore, it is implemented on Xilinx Alveo U250 field programmable gate arrays, which has a million rules and achieves a processing speed of 200 million operations per second, theoretically enabling throughput exceeding 100 Gbps for 64-Byte size packets.

  • The Channel Modeling of Ultra-Massive MIMO Terahertz-Band Communications in the Presence of Mutual Coupling Open Access

    Shouqi LI  Aihuang GUO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/08/23
      Vol:
    E107-A No:5
      Page(s):
    850-854

    The very high path loss caused by molecular absorption becomes the biggest problem in Terahertz (THz) wireless communications. Recently, the multi-band ultra-massive multi-input multi-output (UM-MIMO) system has been proposed to overcome the distance problem. In UM-MIMO systems, the impact of mutual coupling among antennas on the system performance is unable to be ignored because of the dense array. In this letter, a channel model of UM-MIMO communication system is developed which considers coupling effect. The effect of mutual coupling in the subarray on the functionality of the system has been investigated through simulation studies, and reliable results have been derived.

  • A Multiobjective Approach for Side-Channel Based Hardware Trojan Detection Using Power Traces Open Access

    Priyadharshini MOHANRAJ  Saravanan PARAMASIVAM  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/08/23
      Vol:
    E107-A No:5
      Page(s):
    825-835

    The detection of hardware trojans has been extensively studied in the past. In this article, we propose a side-channel analysis technique that uses a wrapper-based feature selection technique for hardware trojan detection. The whale optimization algorithm is modified to carefully extract the best feature subset. The aim of the proposed technique is multiobjective: improve the accuracy and minimize the number of features. The power consumption traces measured from AES-128 trojan circuits are used as features in this experiment. The stabilizing property of the feature selection method helps to bring a mutual trade-off between the precision and recall parameters thereby minimizing the number of false negatives. The proposed hardware trojan detection scheme produces a maximum of 10.3% improvement in accuracy and reduction up to a single feature by employing the modified whale optimization technique. Thus the evaluation results conducted on various trust-hub cryptographic benchmark circuits prove to be efficient from the existing state-of-art methods.

  • Prohibited Item Detection Within X-Ray Security Inspection Images Based on an Improved Cascade Network Open Access

    Qingqi ZHANG  Xiaoan BAO  Ren WU  Mitsuru NAKATA  Qi-Wei GE  

     
    PAPER

      Pubricized:
    2024/01/16
      Vol:
    E107-A No:5
      Page(s):
    813-824

    Automatic detection of prohibited items is vital in helping security staff be more efficient while improving the public safety index. However, prohibited item detection within X-ray security inspection images is limited by various factors, including the imbalance distribution of categories, diversity of prohibited item scales, and overlap between items. In this paper, we propose to leverage the Poisson blending algorithm with the Canny edge operator to alleviate the imbalance distribution of categories maximally in the X-ray images dataset. Based on this, we improve the cascade network to deal with the other two difficulties. To address the prohibited scale diversity problem, we propose the Re-BiFPN feature fusion method, which includes a coordinate attention atrous spatial pyramid pooling (CA-ASPP) module and a recursive connection. The CA-ASPP module can implicitly extract direction-aware and position-aware information from the feature map. The recursive connection feeds the CA-ASPP module processed multi-scale feature map to the bottom-up backbone layer for further multi-scale feature extraction. In addition, a Rep-CIoU loss function is designed to address the overlapping problem in X-ray images. Extensive experimental results demonstrate that our method can successfully identify ten types of prohibited items, such as Knives, Scissors, Pressure, etc. and achieves 83.4% of mAP, which is 3.8% superior to the original cascade network. Moreover, our method outperforms other mainstream methods by a significant margin.

  • A Small-Data Solution to Data-Driven Lyapunov Equations: Data Reduction from O(n2) to O(n) Open Access

    Keitaro TSUJI  Shun-ichi AZUMA  Ikumi BANNO  Ryo ARIIZUMI  Toru ASAI  Jun-ichi IMURA  

     
    PAPER

      Pubricized:
    2023/10/24
      Vol:
    E107-A No:5
      Page(s):
    806-812

    When a mathematical model is not available for a dynamical system, it is reasonable to use a data-driven approach for analysis and control of the system. With this motivation, the authors have recently developed a data-driven solution to Lyapunov equations, which uses not the model but the data of several state trajectories of the system. However, the number of state trajectories to uniquely determine the solution is O(n2) for the dimension n of the system. This prevents us from applying the method to a case with a large n. Thus, this paper proposes a novel class of data-driven Lyapunov equations, which requires a smaller amount of data. Although the previous method constructs one scalar equation from one state trajectory, the proposed method constructs three scalar equations from any combination of two state trajectories. Based on this idea, we derive data-driven Lyapunov equations such that the number of state trajectories to uniquely determine the solution is O(n).

  • Consensus-Based Distributed Exp3 Policy Over Directed Time-Varying Networks Open Access

    Tomoki NAKAMURA  Naoki HAYASHI  Masahiro INUIGUCHI  

     
    PAPER

      Pubricized:
    2023/10/16
      Vol:
    E107-A No:5
      Page(s):
    799-805

    In this paper, we consider distributed decision-making over directed time-varying multi-agent systems. We consider an adversarial bandit problem in which a group of agents chooses an option from among multiple arms to maximize the total reward. In the proposed method, each agent cooperatively searches for the optimal arm with the highest reward by a consensus-based distributed Exp3 policy. To this end, each agent exchanges the estimation of the reward of each arm and the weight for exploitation with the nearby agents on the network. To unify the explored information of arms, each agent mixes the estimation and the weight of the nearby agents with their own values by a consensus dynamics. Then, each agent updates the probability distribution of arms by combining the Hedge algorithm and the uniform search. We show that the sublinearity of a pseudo-regret can be achieved by appropriately setting the parameters of the distributed Exp3 policy.

  • A BDD-Based Approach to Finite-Time Control of Boolean Networks Open Access

    Fuma MOTOYAMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/10/23
      Vol:
    E107-A No:5
      Page(s):
    793-798

    Control of complex networks such as gene regulatory networks is one of the fundamental problems in control theory. A Boolean network (BN) is one of the mathematical models in complex networks, and represents the dynamic behavior by Boolean functions. In this paper, a solution method for the finite-time control problem of BNs is proposed using a BDD (binary decision diagram). In this problem, we find all combinations of the initial state and the control input sequence such that a certain control specification is satisfied. The use of BDDs enables us to solve this problem for BNs such that the conventional method cannot be applied. First, after the outline of BNs and BDDs is explained, the problem studied in this paper is given. Next, a solution method using BDDs is proposed. Finally, a numerical example on a 67-node BN is presented.

  • Two-Phase Approach to Finding the Most Critical Entities in Interdependent Systems Open Access

    Daichi MINAMIDE  Tatsuhiro TSUCHIYA  

     
    PAPER

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:5
      Page(s):
    786-792

    In interdependent systems, such as electric power systems, entities or components mutually depend on each other. Due to these interdependencies, a small number of initial failures can propagate throughout the system, resulting in catastrophic system failures. This paper addresses the problem of finding the set of entities whose failures will have the worst effects on the system. To this end, a two-phase algorithm is developed. In the first phase, the tight bound on failure propagation steps is computed using a Boolean Satisfiablility (SAT) solver. In the second phase, the problem is formulated as an Integer Linear Programming (ILP) problem using the obtained step bound and solved with an ILP solver. Experimental results show that the algorithm scales to large problem instances and outperforms a single-phase algorithm that uses a loose step bound.

  • A Feedback Vertex Set-Based Approach to Simplifying Probabilistic Boolean Networks Open Access

    Koichi KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:5
      Page(s):
    779-785

    A PBN is well known as a mathematical model of complex network systems such as gene regulatory networks. In Boolean networks, interactions between nodes (e.g., genes) are modeled by Boolean functions. In PBNs, Boolean functions are switched probabilistically. In this paper, for a PBN, a simplified representation that is effective in analysis and control is proposed. First, after a polynomial representation of a PBN is briefly explained, a simplified representation is derived. Here, the steady-state value of the expected value of the state is focused, and is characterized by a minimum feedback vertex set of an interaction graph expressing interactions between nodes. Next, using this representation, input selection and stabilization are discussed. Finally, the proposed method is demonstrated by a biological example.

  • Output Feedback Ultimate Boundedness Control with Decentralized Event-Triggering Open Access

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/11/10
      Vol:
    E107-A No:5
      Page(s):
    770-778

    In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.

  • Extension of Counting LTL and Its Application to a Path Planning Problem for Heterogeneous Multi-Robot Systems Open Access

    Kotaro NAGAE  Toshimitsu USHIO  

     
    INVITED PAPER

      Pubricized:
    2023/10/02
      Vol:
    E107-A No:5
      Page(s):
    752-761

    We address a path planning problem for heterogeneous multi-robot systems under specifications consisting of temporal constraints and routing tasks such as package delivery services. The robots are partitioned into several groups based on their dynamics and specifications. We introduce a concise description of such tasks, called a work, and extend counting LTL to represent such specifications. We convert the problem into an ILP problem. We show that the number of variables in the ILP problem is fewer than that of the existing method using cLTL+. By simulation, we show that the computation time of the proposed method is faster than that of the existing method.

  • RC-Oscillator-Based Battery-Less Wireless Sensing System Using RF Resonant Electromagnetic Coupling Open Access

    Zixuan LI  Sangyeop LEE  Noboru ISHIHARA  Hiroyuki ITO  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-A No:5
      Page(s):
    727-740

    A wireless sensor terminal module of 5cc size (2.5 cm × 2.5 cm × 0.8 cm) that does not require a battery is proposed by integrating three kinds of circuit technologies. (i) a low-power sensor interface: an FM modulation type CMOS sensor interface circuit that can operate with a typical power consumption of 24.5 μW was fabricated by the 0.7-μm CMOS process technology. (ii) power supply to the sensor interface circuit: a wireless power transmission characteristic to a small-sized PCB spiral coil antenna was clarified and applied to the module. (iii) wireless sensing from the module: backscatter communication technology that modulates the signal from the base terminal equipment with sensor information and reflects it, which is used for the low-power sensing operation. The module fabricated includes a rectifier circuit with the PCB spiral coil antenna that receives wireless power transmitted from base terminal equipment by electromagnetic resonance coupling and converts it into DC power and a sensor interface circuit that operates using the power. The interface circuit modulates the received signal with the sensor information and reflects it back to the base terminal. The module could achieve 100 mm communication distance when 0.4 mW power is feeding to the sensor terminal.

  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

  • How the Author’s Group Came Up with Ideas in Analog/Mixed-Signal Circuit and System Area Open Access

    Haruo KOBAYASHI  

     
    INVITED PAPER

      Pubricized:
    2023/12/07
      Vol:
    E107-A No:5
      Page(s):
    681-699

    This article reviews the author’s group research achievements in analog/mixed-signal circuit and system area with introduction of how they came up with the ideas. Analog/mixed-signal circuits and systems have to be designed as well-balanced in many aspects, and coming up ideas needs some experiences and discussions with researchers. It is also heavily dependent on researchers. Here, the author’s group own experiences are presented as well as their research motivations.

  • A Monkey Swing Counting Algorithm Based on Object Detection Open Access

    Hao CHEN  Zhe-Ming LU  Jie LIU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/12/07
      Vol:
    E107-D No:4
      Page(s):
    579-583

    This Letter focuses on deep learning-based monkeys' head swing counting problem. Nowadays, there are very few papers on monkey detection, and even fewer papers on monkeys' head swing counting. This research tries to fill in the gap and try to calculate the head swing frequency of monkeys through deep learning, where we further extend the traditional target detection algorithm. After analyzing object detection results, we localize the monkey's actions over a period. This Letter analyzes the task of counting monkeys' head swings, and proposes the standard that accurately describes a monkey's head swing. Under the guidance of this standard, the monkeys' head swing counting accuracy in 50 test videos reaches 94.23%.

  • A Trie-Based Authentication Scheme for Approximate String Queries Open Access

    Yu WANG  Liangyong YANG  Jilian ZHANG  Xuelian DENG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/12/20
      Vol:
    E107-D No:4
      Page(s):
    537-543

    Cloud computing has become the mainstream computing paradigm nowadays. More and more data owners (DO) choose to outsource their data to a cloud service provider (CSP), who is responsible for data management and query processing on behalf of DO, so as to cut down operational costs for the DO.  However, in real-world applications, CSP may be untrusted, hence it is necessary to authenticate the query result returned from the CSP.  In this paper, we consider the problem of approximate string query result authentication in the context of database outsourcing. Based on Merkle Hash Tree (MHT) and Trie, we propose an authenticated tree structure named MTrie for authenticating approximate string query results. We design efficient algorithms for query processing and query result authentication. To verify effectiveness of our method, we have conducted extensive experiments on real datasets and the results show that our proposed method can effectively authenticate approximate string query results.

  • Grid Sample Based Temporal Iteration for Fully Pipelined 1-ms SLIC Superpixel Segmentation System Open Access

    Yuan LI  Tingting HU  Ryuji FUCHIKAMI  Takeshi IKENAGA  

     
    PAPER-Computer System

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    515-524

    A 1 millisecond (1-ms) vision system, which processes videos at 1000 frames per second (FPS) within 1 ms/frame delay, plays an increasingly important role in fields such as robotics and factory automation. Superpixel as one of the most extensively employed image oversegmentation methods is a crucial pre-processing step for reducing computations in various computer vision applications. Among the different superpixel methods, simple linear iterative clustering (SLIC) has gained widespread adoption due to its simplicity, effectiveness, and computational efficiency. However, the iterative assignment and update steps in SLIC make it challenging to achieve high processing speed. To address this limitation and develop a SLIC superpixel segmentation system with a 1 ms delay, this paper proposes grid sample based temporal iteration. By leveraging the high frame rate of the input video, the proposed method distributes the iterations into the temporal domain, ensuring that the system's delay keeps within one frame. Additionally, grid sample information is added as initialization information to the obtained superpixel centers for enhancing the stability of superpixels. Furthermore, a selective label propagation based pipeline architecture is proposed for parallel computation of all the possibilities of label propagation. This eliminates data dependency between adjacent pixels and enables a fully pipelined system. The evaluation results demonstrate that the proposed superpixel segmentation system achieves boundary recall and under-segmentation error comparable to the original SLIC algorithm. When considering label consistency, the proposed system surpasses the performance of state-of-the-art superpixel segmentation methods. Moreover, in terms of hardware performance, the proposed system processes 1000 FPS images with 0.985 ms/frame delay.

  • Multi-Style Shape Matching GAN for Text Images Open Access

    Honghui YUAN  Keiji YANAI  

     
    PAPER

      Pubricized:
    2023/12/27
      Vol:
    E107-D No:4
      Page(s):
    505-514

    Deep learning techniques are used to transform the style of images and produce diverse images. In the text style transformation field, many previous studies attempted to generate stylized text using deep learning networks. However, to achieve multiple style transformations for text images, the methods proposed in previous studies require learning multiple networks or cannot be guided by style images. Thus, in this study we focused on multistyle transformation of text images using style images to guide the generation of results. We propose a multiple-style transformation network for text style transfer, which we refer to as the Multi-Style Shape Matching GAN (Multi-Style SMGAN). The proposed method generates multiple styles of text images using a single model by training the model only once, and allows users to control the text style according to style images. The proposed method implements conditions to the network such that all styles can be distinguished effectively in the network, and the generation of each styled text can be controlled according to these conditions. The proposed network is optimized such that the conditional information can be transmitted effectively throughout the network. The proposed method was evaluated experimentally on a large number of text images, and the results show that the trained model can generate multiple-style text in realtime according to the style image. In addition, the results of a user survey study indicate that the proposed method produces higher quality results compared to existing methods.

121-140hit(22683hit)