Takaya MIYAZAWA Kentaro ISHIZU Hitoshi ASAEDA Hiroyuki TSUJI Hiroaki HARAI
Recently, the open radio access network (O-RAN) architecture has been expected to enhance both the openness of network components and the intelligence of control functions as a promising RAN architecture for Beyond 5G (B5G)/6G networks. Meanwhile, the power consumption of base stations (BSs) in RAN is a serious problem that needs to be addressed owing to the recent increase in service types such as 4G-LTE, 5G, and local 5G, and it will be more remarkable in the future B5G era. However, a conventional RAN experiences energy wastage because it turns on the power of all BSs at all times, even in coverage areas that accommodate a small number of mobile terminals and low traffic. The O-RAN Alliance discusses the energy savings of BSs, but its standard specification lacks sufficient discussions on concrete models and protocols to realize highly energy-efficient power-on/off management of BSs. On the other hand, terrestrial network (TN) and non-terrestrial network (NTN) convergence has recently been considered in both academic research and standardization as an emerging technology for B5G networks. However, utilizing NTN capacities for BS power-on/off control of TN in the standard O-RAN architecture remains uninvestigated, although it has the potential to achieve higher energy efficiency. This study proposes a novel energy-efficient power management architecture for O-RAN BSs. The proposed power management architecture extends the traditional standard O-RAN architecture such that the pedestrian flow analytics results and NTN capacities can be effectively utilized to obtain a higher energy-saving effect for O-RAN BSs. Consequently, the proposed power-on/off control reduces the power consumption of O-RAN BSs while maintaining the continuity of communications, bitrate, and other metrics. We performed numerical calculations using real datasets of pedestrian flows in regional mesh areas. As a result, we proved that the proposed architecture reduces power consumption by up to 40% when the NTN can accommodate UEs’ traffic of approximately 400 Mbps. In addition, we implemented pedestrian flow analytics and power control functions in the controllers. We verified the feasibility of the functions by demonstrating the power-on/-off of an O-RAN BS using a mobile network testbed.
Shohei KAMAMURA Yuhei HAYASHI Takayuki FUJIWARA
This paper proposes an anomaly-detection method using the Fast xFlow Proxy, which enables fine-grained measurement of communication traffic. When a fault occurs in services or networks, communication traffic changes from its normal behavior. Therefore, anomalies can be detected by analyzing their autocorrelations. However, in large-scale carrier networks, packets are generally encapsulated and observed as aggregate values, making it difficult to detect minute changes in individual communication flows. Therefore, we developed the Fast xFlow Proxy, which analyzes encapsulated packets in real time and enables flows to be measured at an arbitrary granularity. In this paper, we propose an algorithm that utilizes the Fast xFlow Proxy to detect not only the anomaly occurrence but also its cause, that is, the location of the fault at the end-to-end. The idea is not only to analyze the autocorrelation of a specific flow but also to apply spatial analysis to estimate the fault location by comparing the behavior of multiple flows. Through extensive simulations, we demonstrate that base station, network, and service faults can be detected without any false negative detections.
In Information-Centric Networking (ICN), different routing and caching schemes have been proposed to efficiently utilize in-network caches and reduce network traffic. Most of them assume that the popularity distribution of user-requested content is homogeneous. However, the actual popularity distribution measured on the Internet is reported to possess spatial and temporal localities, which can heavily affect caching performance in ICN. Breadcrumbs (BC) routing is a key solution to mitigate performance degradation due to spatial locality because of its ability to flexibly discover cached contents in the off-path. In this paper, we deeply investigate the spatial effects of BC by revealing where utilized cached contents are located, how BC discovers these contents, what kind of contents are found, and how BC fill in the locality gap of content popularity. We also focus on another time-dimension perspective, i.e., the temporal locality of content popularity, and conduct a comprehensive study of how BC routing can be adapted to the spatiotemporal locality of content popularity in ICN.
Zhiwei LU Yiwen JIAO Yudi CHEN
In this paper, we study the problem of high stability code tracking for band-limited direct sequence spread spectrum (DSSS) systems. In band-limited DSSS systems carrying critical applications, high stability is required in addition to low error variance for code tracking. Therefore, we propose a high stability code tracking method for band-limited DSSS systems, which constructs frequency domain vectors from the received signal, reduces the dimension of the vectors by frequency domain integration and dump, and estimates the time-delay error by the subspace method. We also give a closed-form expression for the steady-state time-delay error variance of the proposed method, which can be used to analyze the error variance performance theoretically and design proper band-limited DSSS systems. The theoretical analysis and simulation results show that the proposed method is able to enhance both the maximum and linear code tracking ranges, thus realizing high stability code tracking, and has constant error variance performance and appropriate computational complexity.
Ming YUE Yuyang PENG Liping XIONG Chaorong ZHANG Fawaz AL-HAZEMI Mohammad Meraj MIRZA
In this paper, we propose a novel communication scheme that combines reconfigurable intelligent surface with transmitted adaptive space shift keying (RIS-TASSK), where the number of active antennas is not fixed. In each time slot, the desired candidate antenna or antenna combination will be selected from all available antenna combinations for conveying information bits. Besides, an antenna selection method based on channel gains is proposed for RIS-TASSK to improve the bit error rate (BER) performance and decrease the complexity, respectively. By comparing with the RIS-aided transmitted space shift keying and RIS-aided transmitted generalized space shift keying schemes, the simulation and theoretical results show that the proposed scheme has better BER performance and appropriate complexity.
Yoichi HINAMOTO Shotaro NISHIMURA
A state-space approach for adaptive second-order IIR notch digital filters is explored. A simplified iterative algorithm is derived from the gradient-descent method to minimize the mean-squared output of an adaptive notch digital filter. The stability and parameter-estimation bias are then analyzed by employing a first-order linear dynamical system. As a consequence, it is clarified that the resulting parameter estimate is unbiased. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the adaptive state-space notch digital filter and bias analysis of parameter estimation.
Rong WANG Changjun YU Zhe LYU Aijun LIU
To address the challenge of target signals being completely submerged by ionospheric clutter during typhoon passages, this letter proposes a chaotic detection method for target signals in the background of ionospheric noise under typhoon excitation. Experimental results demonstrate the effectiveness of the proposed method in detecting target signals with harmonic characteristics from strong ionospheric clutter during typhoon passages.
To fully exploit the attribute information in graphs and dynamically fuse the features from different modalities, this letter proposes the Attributed Graph Clustering Network with Adaptive Feature Fusion (AGC-AFF) for graph clustering, where an Attribute Reconstruction Graph Autoencoder (ARGAE) with masking operation learns to reconstruct the node attributes and adjacency matrix simultaneously, and an Adaptive Feature Fusion (AFF) mechanism dynamically fuses the features from different modules based on node attention. Extensive experiments on various benchmark datasets demonstrate the effectiveness of the proposed method.
Feifei YAN Pinhui KE Zuling CHANG
Recently, trace representation of a class of balanced quaternary sequences of period p from the classical cyclotomic classes was given by Yang et al. (Cryptogr. Commun.,15 (2023): 921-940). In this letter, based on the generalized cyclotomic classes, we define a class of balanced quaternary sequences of period pn, where p = ef + 1 is an odd prime number and satisfies e ≡ 0 (mod 4). Furthermore, we calculate the defining polynomial of these sequences and obtain the formula for determining their trace representations over ℤ4, by which the linear complexity of these sequences over ℤ4 can be determined.
Pingping JI Lingge JIANG Chen HE Di HE Zhuxian LIAN
High altitude platform (HAP), known as line-of-sight dominated communications, effectively enhance the spectral efficiency of wireless networks. However, the line-of-sight links, particularly in urban areas, may be severely deteriorated due to the complex communication environment. The reconfigurable intelligent surface (RIS) is employed to establish the cascaded-link and improve the quality of communication service by smartly reflecting the signals received from HAP to users without direct-link. Motivated by this, the joint precoding scheme for a novel RIS-aided beamspace HAP with non-orthogonal multiple access (HAP-NOMA) system is investigated to maximize the minimum user signal-to-leakage-plus-noise ratio (SLNR) by considering user fairness. Specifically, the SLNR is utilized as metric to design the joint precoding algorithm for a lower complexity, because the isolation between the precoding obtainment and power allocation can make the two parts be attained iteratively. To deal with the formulated non-convex problem, we first derive the statistical upper bound on SLNR based on the random matrix theory in large scale antenna array. Then, the closed-form expressions of power matrix and passive precoding matrix are given by introducing auxiliary variables based on the derived upper bound on SLNR. The proposed joint precoding only depends on the statistical channel state information (SCSI) instead of instantaneous channel state information (ICSI). NOMA serves multi-users simultaneously in the same group to compensate for the loss of spectral efficiency resulted from the beamspace HAP. Numerical results show the effectiveness of the derived statistical upper bound on SLNR and the performance enhancement of the proposed joint precoding algorithm.
Jun SAITO Nobuhide NONAKA Kenichi HIGUCHI
We propose a novel peak-to-average power ratio (PAPR) reduction method based on a peak cancellation (PC) signal vector that considers the variance in the average signal power among transmitter antennas for massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) signals using the null space in a MIMO channel. First, we discuss the conditions under which the PC signal vector achieves a sufficient PAPR reduction effect after its projection onto the null space of the MIMO channel. The discussion reveals that the magnitude of the correlation between the PC signal vector before projection and the transmission signal vector should be as low as possible. Based on this observation and the fact that to reduce the PAPR it is helpful to suppress the variation in the transmission signal power among antennas, which may be enhanced by beamforming (BF), we propose a novel method for generating a PC signal vector. The proposed PC signal vector is designed so that the signal power levels of all the transmitter antennas are limited to be between the maximum and minimum power threshold levels at the target timing. The newly introduced feature in the proposed method, i.e., increasing the signal power to be above the minimum power threshold, contributes to suppressing the transmission signal power variance among antennas and to improving the PAPR reduction capability after projecting the PC signal onto the null space in the MIMO channel. This is because the proposed method decreases the magnitude of the correlation between the PC signal vectors before its projection and the transmission signal vectors. Based on computer simulation results, we show that the PAPR reduction performance of the proposed method is improved compared to that for the conventional method and the proposed method reduces the computational complexity compared to that for the conventional method for achieving the same target PAPR.
Wenfei GUO Jun ZHANG Chi GUO Weijun FENG
Low signal power and susceptibility to interference cause difficulties for traditional global navigation satellite system (GNSS) receivers in tracking weak signals. Extending coherent integration time is a common approach for enhancing signal gain. However, coherent integration time cannot be indefinitely increased owing to navigation bit sign transition, receiver dynamics, and clock noises. This study proposes a cross-correlation phase combining (CPC) algorithm suitable for distributed multi-antenna receivers to improve carrier-tracking performance in weak GNSS signal conditions. This algorithm cross-correlates each antenna’s intermediate frequency (IF) signal and local carrier to detect the phase differences. Subsequently, the IF signals are weighted to achieve phase alignment and coherently combined. The carrier-to-noise ratio (CNR) and carrier phase equation of the combined signal were derived for the CPC algorithm. Global positioning system (GPS) signals received by distributed antenna array with six elements were used to validate the performance of the algorithm. The results demonstrated that the CPC algorithm could effectively achieve signal phase alignment at 32 dB-Hz, resulting in a combined-signal CNR enhancement of 6 dB. The phase-tracking error variance was reduced by 72% at 30 dB-Hz compared with that of a single-antenna signal. The algorithm exhibited low phased array calibration requirements, overcoming the limitations associated with coherent integration time and effectively enhancing tracking performance in weak-signal environments.
Nonradiative dielectric waveguide is a transmission medium for millimeter-wave integrated circuits, invented in Japan. This transmission line is characterized by low transmission loss and non-radiating nature in bends and discontinuities. It has been actively researched from 1980 to 2000, primarily at Tohoku University. This paper explains the fundamental characteristics, including passive and active circuits, and provides an overview of millimeter-wave systems such as gigabit-class ultra-high-speed data transmission applications and various radar applications. Furthermore, the performance in the THz frequency band, where future applications are anticipated, is also discussed.
Tomoo USHIO Yuuki WADA Syo YOSHIDA
Numerous meteorological disasters recur almost annually. One of the most effective means to observe these phenomena causing such disasters is meteorological radar. A group comprising Toshiba, the National Institute of Information and Communications Technology (NICT), and Osaka University has developed an X-band phased array radar, improving observation time from the conventional 10-minute duration to just 30 seconds by using phased array technology. The initial radar was installed at Osaka University in May 2012, and was recently replaced by a dual-polarization one. Phased array radar has demonstrated superior temporal and spatial resolution compared to conventional radars and has shown equivalent accuracy in observing variables such as rain rate. Future research is expected to illuminate the advantages and limitations of dual-polarization phased array radar networks, fostering their widespread adoption not only in Japan but also globally.
Takuya SAKAMOTO Itsuki IWATA Toshiki MINAMI Takuya MATSUMOTO
There has been a growing interest in the application of radar technology to the monitoring of humans and animals and their positions, motions, activities, and vital signs. Radar can be used, for example, to remotely measure vital signs such as respiration and heartbeat without contact. Radar-based human sensing is expected to be adopted in a variety of fields, such as medicine, healthcare, and entertainment, but what can be realized by radar-based animal sensing? This paper reviews the latest research trends in the noncontact sensing of animals using radar systems. We also present examples of our past radar experiments for the respiratory measurement of monkeys and the heartbeat measurement of chimpanzees. The trends in this field are reviewed in terms of the target animal species, type of vital sign, and radar type and selection of frequencies.
Japan encounters an urgent issue of “Carbon Neutrality” as a member of the international world and is required to make the action plans to accomplish this issue, i.e., the zero emission of CO2 by 2050. Our world must change the industries to adapt to the electrification based on the renewable powers. Microwave chemistry is a candidate of electrification of industries for the carbon neutrality on the conditions of usage of renewable energy power generation. This invited paper shows an example of “Microwave Pidgeon process” for smelting magnesium in which heating with burning fossil coals can be replaced with microwave energy for discussing how microwave technology should be developed for that purpose from both the academic and industrial sides.
This paper presents a comprehensive design approach to load-independent radio frequency (RF) power amplifiers. We project the zero-voltage-switching (ZVS) and zero-voltage-derivative-switching (ZVDS) load impedances onto a Smith chart, and find that their loci exhibit geodesic arcs. We exploit a two-port reactive network to convert the geodesic locus into another geodesic. This is named geodesic-to-geodesic (G2G) impedance conversion, and the power amplifier that employs G2G conversion is called class-G2G amplifier. We comprehensively explore the possible circuit topologies, and find that there are twenty G2G networks to create class-G2G amplifiers. We also find out that the class-G2G amplifier behaves like a transformer or a gyrator converting from dc to RF. The G2G design theory is verified via a circuit simulation. We also verified the theory through an experiment employing a prototype 100 W amplifier at 6.78 MHz. We conclude that the presented design approach is quite comprehensive and useful for the future development of high-efficiency RF power amplifiers.
Akihiko ISHIWATA Yasumasa NAKA Masaya TAMURA
The load-independent zero-voltage switching class-E inverter has garnered considerable interest as an essential component in wireless power transfer systems. This inverter achieves high efficiency across a broad spectrum of load conditions by incorporating a load adjustment circuit (LAC) subsequent to the resonant filter. Nevertheless, the presence of the LAC influences the output impedance of the inverter, thereby inducing a divergence between the targeted and observed output power, even in ideal lossless simulations. Consequently, iterative adjustments to component values are required via an LC element implementation. We introduce a novel design methodology that incorporates an external quality factor on the side of the resonant filter, inclusive of the LAC. Thus, the optimized circuit achieves the intended output power without necessitating alterations in component values.
A double step attenuation measurement technique using a non-isolating gauge block attenuator (GBA) has been proposed for accurate measurements of radio frequency and microwave high attenuation. For fixed attenuator as a device under test (DUT), a medium value (≤ 60 dB) attenuator is used as the GBA which connected directly between the test ports, then high attenuation of the DUT is measured in two setups as follows. 1) Thru and GBA with normal power level and 2) GBA and DUT with higher power level. This approach removes the need to isolate the GBA, therefore, accurate measurements of high attenuation can be obtained simply over a broad frequency range. For variable or step attenuator as a DUT, one of the attenuation sections of the DUT is applied as the GBA. Detailed analyses and those verification measurements are carried out both for fixed attenuator, as well as for variable attenuator and show good agreement.
Ting DING Jiandong ZHU Jing YANG Xingmeng JIANG Chengcheng LIU
Considering the non-convexity of hybrid precoding and the hardware constraints of practical systems, a hybrid precoding architecture, which combines limited-resolution overlapped phase shifter networks with lens array, is investigated. The analogy part is a beam selection network composed of overlapped low-resolution phase shifter networks. In particular, in the proposed hybrid precoding algorithm, the analog precoding improves array gain by utilizing the quantization beam alignment method, whereas the digital precoding schemes multiplexing gain by adopting a Wiener Filter precoding scheme with a minimum mean square error criterion. Finally, in the sparse scattering millimeter-wave channel for the uniform linear array, the proposed method is compared with the existing scheme by computer simulation by using the ideal channel state information and the non-ideal channel state information. It is concluded that the proposed scheme performs better in low signal-to-noise regions and can achieve a good compromise between system performance and hardware complexity.