The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

2981-3000hit(5900hit)

  • Video Watermarking by Space-Time Interest Points

    Lei-Da LI  Bao-Long GUO  Jeng-Shyang PAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2252-2256

    This letter presents a novel robust video watermarking scheme based on space-time interest points. These points correspond to inherent structures of the video so that they can be used as synchronization signals for watermark embedding and extraction. In the proposed scheme, local regions are generated using the space-time interest points, and the watermark is embedded into all the regions by quantization. It is a blind scheme and the watermark can be extracted from any position of the video. Experimental results show that the watermark is invisible and it can robustly survive traditional signal processing attacks and video-oriented attacks.

  • Content-Aware Fast Motion Estimation for H.264/AVC

    Zhenyu LIU  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1944-1952

    The key to high performance in video coding lies on efficiently reducing the temporal redundancies. For this purpose, H.264/AVC coding standard has adopted variable block size motion estimation on multiple reference frames to improve the coding gain. However, the computational complexity of motion estimation is also increased in proportion to the product of the reference frame number and the intermode number. The mathematical analysis in this paper reveals that the prediction errors mainly depend on the image edge gradient amplitude and quantization parameter. Consequently, this paper proposes the image content based early termination algorithm, which outperforms the original method adopted by JVT reference software, especially at high and moderate bit rates. In light of rate-distortion theory, this paper also relates the homogeneity of image to the quantization parameter. For the homogenous block, its search computation for futile reference frames and intermodes can be efficiently discarded. Therefore, the computation saving performance increases with the value of quantization parameter. These content based fast algorithms were integrated with Unsymmetrical-cross Multihexagon-grid Search (UMHexagonS) algorithm to demonstrate their performance. Compared to the original UMHexagonS fast matching algorithm, 26.14-54.97% search time can be saved with an average of 0.0369 dB coding quality degradation.

  • Threshold Equalization for On-Line Signature Verification

    Isao NAKANISHI  Hiroyuki SAKAMOTO  Yoshio ITOH  Yutaka FUKUI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2244-2247

    In on-line signature verification, complexity of signature shape can influence the value of the optimal threshold for individual signatures. Writer-dependent threshold selection has been proposed but it requires forgery data. It is not easy to collect such forgery data in practical applications. Therefore, some threshold equalization method using only genuine data is needed. In this letter, we propose three different threshold equalization methods based on the complexity of signature. Their effectiveness is confirmed in experiments using a multi-matcher DWT on-line signature verification system.

  • Differential Energy Based Watermarking Algorithm Using Wavelet Tree Group Modulation (WTGM) and Human Visual System

    Min-Jen TSAI  Chang-Hsing SHEN  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1961-1973

    Wavelet tree based watermarking algorithms are using the wavelet coefficient energy difference for copyright protection and ownership verification. WTQ (Wavelet Tree Quantization) algorithm is the representative technique using energy difference for watermarking. According to the cryptanalysis on WTQ, the watermark embedded in the protected image can be removed successfully. In this paper, we present a novel differential energy watermarking algorithm based on the wavelet tree group modulation structure, i.e. WTGM (Wavelet Tree Group Modulation). The wavelet coefficients of host image are divided into disjoint super trees (each super tree containing two sub-super trees). The watermark is embedded in the relatively high-frequency components using the group strategy such that energies of sub-super trees are close. The employment of wavelet tree structure, sum-of-subsets and positive/negative modulation effectively improve the drawbacks of the WTQ scheme for its insecurity. The integration of the HVS (Human Visual System) for WTGM provides a better visual effect of the watermarked image. The experimental results demonstrate the effectiveness of our algorithm in terms of robustness and imperceptibility.

  • Neighbor-Aided Authentication Watermarking Based on a Chaotic System with Feedback

    Rongrong NI  Qiuqi RUAN  

     
    LETTER-Application Information Security

      Vol:
    E91-D No:8
      Page(s):
    2196-2198

    A neighbor-aided authentication watermarking based on a chaotic system with feedback is proposed in this paper. This algorithm can not only detect malicious manipulations but reveal block substitutions when the VQ attack occurs. An image is partitioned into non-overlapped blocks. The pixels in one block and its neighboring block are combined to produce an authentication watermark based on a chaotic system with feedback, which is sensitive to the initial value. The produced watermark is embedded into the current block. During detection, the detector extracts the watermark firstly, then generates a reference sequence and compares it with the extracted watermark to authenticate the integrity of the image and locate the tampered regions. Experimental results prove the effectiveness of our method.

  • A Large-Scale, Flip-Flop RAM Imitating a Logic LSI for Fast Development of Process Technology

    Masako FUJII  Koji NII  Hiroshi MAKINO  Shigeki OHBAYASHI  Motoshige IGARASHI  Takeshi KAWAMURA  Miho YOKOTA  Nobuhiro TSUDA  Tomoaki YOSHIZAWA  Toshikazu TSUTSUI  Naohiko TAKESHITA  Naofumi MURATA  Tomohiro TANAKA  Takanari FUJIWARA  Kyoko ASAHINA  Masakazu OKADA  Kazuo TOMITA  Masahiko TAKEUCHI  Shigehisa YAMAMOTO  Hiromitsu SUGIMOTO  Hirofumi SHINOHARA  

     
    PAPER

      Vol:
    E91-C No:8
      Page(s):
    1338-1347

    We propose a new large-scale logic test element group (TEG), called a flip-flop RAM (FF-RAM), to improve the total process quality before and during initial mass production. It is designed to be as convenient as an SRAM for measurement and to imitate a logic LSI. We implemented a 10 Mgates FF-RAM using our 65-nm CMOS process. The FF-RAM enables us to make fail-bit maps (FBM) of logic cells because of its cell array structure as an SRAM. An FF-RAM has an additional structure to detect the open and short failure of upper metal layers. The test results show that it can detect failure locations and layers effortlessly using FBMs. We measured and analyzed it for both the cell arrays and the upper metal layers. Their results provided many important clues to improve our processes. We also measured the neutron-induced soft error rate (SER) of FF-RAM, which is becoming a serious problem as transistors become smaller. We compared the results of the neutron-induced soft error rate to those of previous generations: 180 nm, 130 nm, and 90 nm. Because of this TEG, we can considerably shorten the development period for advanced CMOS technology.

  • Quasi-Hierarchical Routing Algorithm for ZigBee/IEEE 802.15.4 Networks

    Youn-Soo KIM  Eun Ju LEE  Bong Soo KIM  Hyung Seok KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E91-A No:8
      Page(s):
    2269-2271

    ZigBee recently has been used a lot in wireless sensor networks because of its low power consumption and affordable chips. However, ZigBee's existing hierarchical routing algorithm has a disadvantage in that a node may communicate with a nearby node over several hops. In this letter we propose a Quasi-Hierarchical Routing (QHR) algorithm that can improve the ZigBee hierarchical routing method's inefficiency by using brief information on neighbors within radio range. The network simulation evaluates this QHR's performance by comparing it to other ZigBee routing schemes.

  • Broadband Access Network Planning Optimization Considering Real Copper Cable Lengths

    Bla PETERNEL  Andrej KOS  

     
    PAPER

      Vol:
    E91-B No:8
      Page(s):
    2525-2532

    Broadband access network planning strategies with techno-economic calculations are important topics, when optimal broadband network deployments are considered. This paper analyzes optimal deployment combination of digital subscriber line technologies (xDSL) and fiber to the home technologies (FTTx), following different user bandwidth demand scenarios. For this reason, optimal placement of remote digital subscriber line multiplexer (RDSLAM) is examined. Furthermore, the article also discusses the economy of investments, depending on certain investment threshold and the reach of different xDSL technologies. Finally, the difference between broadband network deployment in a characteristic urban and rural area in Republic of Slovenia, in terms of required optical cable dig length per household is shown. A tree structure network model of a traditional copper access network is introduced. A dynamic programming logic, with recursion as a basis of a tree structure examination and evaluation of optimal network elements placement is used. The tree structure network model considers several real network parameters (e.g.: copper cable lengths, user coordinates, node coordinates). The main input for the optimization is a local loop distance between each user and a candidate node for RDSLAM placement. Modelling of copper access networks with a tree structure makes new extensions in planning optimization of broadband access networks. Optimization of network elements placement has direct influence on efficiency and profitability of broadband access telecommunication networks.

  • Regenerative Strategy for Fairness in Bi-directional Three-Node Relaying

    Ning HU  Xiaofeng ZHONG  Ming ZHAO  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:8
      Page(s):
    2736-2739

    The fairness solution without deteriorating the system sum-rate is a challenge under a total energy constraint. One regenerative strategy is proposed to improve the fairness for bi-directional three-node relaying, which is based on decode-and-forward technique with network coding and power optimization. In this letter, the application of network coding decreases the number of transmission phases from traditional four phases to three phases. Moreover, the proposed power optimization algorithm can be applied in practical system, which transforms max-min optimization problem to linear programming (LP) with low complexity. Numerical simulations shows this strategy enhances the minimum of unidirectional transmission rate up to 94% as compared to a four-phase bi-directional strategy, and up to 46% as compared to the three-phase bi-directional strategy with equal-power allocation.

  • Computing Epipolar Geometry from Unsynchronized Cameras

    Ying PIAO  Jun SATO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:8
      Page(s):
    2171-2178

    Recently, many application systems have been developed by using a large number of cameras. If 3D points are observed from synchronized cameras, the multiple view geometry of these cameras can be computed and the 3D reconstruction of the scene is available. Thus, the synchronization of multiple cameras is essential. In this paper, we propose a method for synchronizing multiple cameras and for computing the epipolar geometry from uncalibrated and unsynchronized cameras. In particular we using affine invariance to match the frame numbers of camera images for finding the synchronization. The proposed method is tested by using real image sequences taken from uncalibrated and unsynchronized cameras.

  • Initial Codebook Algorithm of Vector Quantizaton

    ShanXue CHEN  FangWei LI  WeiLe ZHU  TianQi ZHANG  

     
    LETTER-Algorithm Theory

      Vol:
    E91-D No:8
      Page(s):
    2189-2191

    A simple and successful design of initial codebook of vector quantization (VQ) is presented. For existing initial codebook algorithms, such as random method, the initial codebook is strongly influenced by selection of initial codewords and difficult to match with the features of the training vectors. In the proposed method, training vectors are sorted according to the norm of training vectors. Then, the ordered vectors are partitioned into N groups where N is the size of codebook. The initial codewords are obtained from calculating the centroid of each group. This initializtion method has a robust performance and can be combined with the VQ algorithm to further improve the quality of codebook.

  • Locally Adaptive Perceptual Compression for Color Images

    Kuo-Cheng LIU  Chun-Hsien CHOU  

     
    PAPER-Image

      Vol:
    E91-A No:8
      Page(s):
    2213-2222

    The main idea in perceptual image compression is to remove the perceptual redundancy for representing images at the lowest possible bit rate without introducing perceivable distortion. A certain amount of perceptual redundancy is inherent in the color image since human eyes are not perfect sensors for discriminating small differences in color signals. Effectively exploiting the perceptual redundancy will help to improve the coding efficiency of compressing color images. In this paper, a locally adaptive perceptual compression scheme for color images is proposed. The scheme is based on the design of an adaptive quantizer for compressing color images with the nearly lossless visual quality at a low bit rate. An effective way to achieve the nearly lossless visual quality is to shape the quantization error as a part of perceptual redundancy while compressing color images. This method is to control the adaptive quantization stage by the perceptual redundancy of the color image. In this paper, the perceptual redundancy in the form of the noise detection threshold associated with each coefficient in each subband of three color components of the color image is derived based on the finding of perceptually indistinguishable regions of color stimuli in the uniform color space and various masking effects of human visual perception. The quantizer step size for the target coefficient in each color component is adaptively adjusted by the associated noise detection threshold to make sure that the resulting quantization error is not perceivable. Simulation results show that the compression performance of the proposed scheme using the adaptively coefficient-wise quantization is better than that using the band-wise quantization. The nearly lossless visual quality of the reconstructed image can be achieved by the proposed scheme at lower entropy.

  • Leakage Current and Floating Gate Capacitor Matching Test

    Weidong TIAN  Joe R. TROGOLO  Bob TODD  

     
    INVITED PAPER

      Vol:
    E91-C No:8
      Page(s):
    1315-1320

    Capacitor mismatch is an important device parameter for precision analog applications. In the last ten years, the floating gate measurement technique has been widely used for its characterization. In this paper we describe the impact of leakage current on the technique. The leakage can come from, for example, thin gate oxide MOSFETs or high dielectric constant capacitors in advanced technologies. SPICE simulation, bench measurement, analytical model and numerical analyses are presented to illustrate the problem and key contributing factors. Criteria for accurate capacitor systematic and random mismatch characterization are developed, and practical methods of increasing measurement accuracy are discussed.

  • On Generalized Feistel Structures Using the Diffusion Switching Mechanism

    Taizo SHIRAI  Kiyomichi ARAKI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2120-2129

    To design secure blockciphers, estimating immunity against differential attack and linear attack is essential. Recently, Diffusion Switching Mechanism (DSM) is proposed as a design framework to enhance the immunity of Feistel structure against differential attack and linear attack. In this paper, we give novel results on the effect of DSM on three generalized Feistel structures, i.e. Type-I, Type-II and Nyberg's structures. We first show a method for roughly estimating lower bounds of a number of active S-boxes in Type-I and Type-II structures using DSM. Then we propose an improved search algorithm to find lower bounds for generalized structures efficiently. Experimental results obtained by the improved algorithm show that DSM raises lower bounds for all of the structures, and also show that Nyberg's structure has the slowest diffusion effect among them when SP-type F-functions are used.

  • Design of Asymmetric VQ Codebooks Incorporating Channel Coding

    Jong-Ki HAN  Jae-Gon KIM  

     
    PAPER-Communication Theory and Signals

      Vol:
    E91-A No:8
      Page(s):
    2195-2204

    In this paper, a communication system using vector quantization (VQ) and channel coding is considered. Here, a design scheme has been proposed to optimize source codebooks in the transmitter and the receiver. In the proposed algorithm, the overall distortion including both the quantization error and channel distortion is minimized. The proposed algorithm is different from the previous work by the facts that the channel encoder is used in the VQ-based communication system, and the source VQ codebook used in the transmitter is different from the one used by the receiver, i.e. asymmetric VQ system. And the bounded-distance decoding (BDD) technique is used to combat the ambiguousness in the channel decoder. We can see from the computer simulations that the optimized system based on the proposed algorithm outperforms a conventional system based on a symmetric VQ codebook. Also, the proposed algorithm enables a reliable image communication over noisy channels.

  • Relationship between Arc Duration and Motion of Arc Spots for Break Arcs of Ag and Ag/ZnO Electrical Contacts

    Junya SEKIKAWA  Takumi SUGIO  Takayoshi KUBONO  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1249-1254

    Break arcs are generated in a DC 42 V-10 A resistive circuit. The contact material is Ag or Ag/ZnO. The number of break operations is two hundreds for each contact material. The motion of break arcs is observed with a high-speed camera. Relationship between the dependence of arc duration on the number of operations and the motion of arc spots is investigated. The following results are shown. For Ag contacts the arc duration is almost constant independent to the number of break operations. For Ag/ZnO contacts, on the other hand, the arc duration changes irregularly to short (59 ms) or long (69 ms) arc-duration after 30th break operation. The moving range of arc spots on contact surfaces is broad for the case of short arc-duration and is narrow for the case of long arc-duration. The cause of the results for Ag/ZnO contacts is considered that the difference of the boiling points of Ag and ZnO leads to the porous structure on the contact surface.

  • Consistency in a Chaotic Spiking Oscillator

    Tomohiro INAGAKI  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E91-A No:8
      Page(s):
    2240-2243

    This letter studies response of a chaotic spiking oscillator to chaotic spike-train inputs. The circuit can exhibits a variety of synchronous/asynchronous phenomena and we show an interesting phenomenon "consistency": the circuit can exhibit random response that is identical in steady steady state for various initial values. Presenting a simple test circuit, the consistency is confirmed experimentally.

  • Low-Temperature Grown GaAsSb with Sub-Picosecond Photocarrier Lifetime for Continuous-Wave Terahertz Measurements

    Jochen SIGMUND  Jean-Francois LAMPIN  Valentin IVANNIKOV  Cezary SYDLO  Michail FEIGINOV  Dimitris PAVLIDIS  Peter MEISSNER  Hans L. HARTNAGEL  

     
    PAPER-Sb-based Devices

      Vol:
    E91-C No:7
      Page(s):
    1058-1062

    We report on continuous-wave optoelectronic terahertz (THz) measurements using low-temperature grown (LTG) GaAsSb as photomixer material. A broadband log-periodic antenna and a six interdigital finger photomixer with 1 µm gap is fabricated on LTG-GaAsSb for THz generation and detection. At 0.37 THz, the resonance frequency of the inner most antenna tooth, we obtained a power of 6.3 nW. A Golay cell was used as detector. The photocarrier lifetime of the material was determined to be 700 fs by pump-probe experiments with an optical wavelength close to the band gap of LTG-GaAsSb. The band gap was 1.0 eV, measured by wavelength dependent pump-probe measurements.

  • Packet Size Based Routing for Stable Data Delivery in Mobile Ad-Hoc Networks

    Ashiq KHAN  Toshihiro SUZUKI  Motonari KOBAYASHI  Wataru TAKITA  Kenichi YAMAZAKI  

     
    PAPER-Network

      Vol:
    E91-B No:7
      Page(s):
    2244-2254

    In Mobile Ad-hoc Networks (MANET), transportation capability of wireless links' varies according to the size of the packets they transport. This instability, which is more acute in long links, has received little attention in the stabilizing schemes proposed so far for MANET. A lot of research has been carried out to utilize more reliable links in making end-to-end routes to avoid frequent route failures and realize higher packet delivery ratio. However, these approaches mainly consider the availability of a link over time and depend on link history which is difficult to acquire in highly dynamic systems. In this paper, we present an easy-to-implement but efficient method to find suitable end-to-end routes that are capable of transporting different sizes of the application data packets. Our scheme is stateless and does not rely on the underlying data link and physical layers. An extensive simulation shows the validity of our concept and highlights the improvement achieved by our proposal.

  • Scalable and Systolic Montgomery Multipliers over GF(2m)

    Chin-Chin CHEN  Chiou-Yng LEE  Erl-Huei LU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:7
      Page(s):
    1763-1771

    This work presents a novel scalable and systolic Montgomery's algorithm in GF(2m). The proposed algorithm is based on the Toeplitz matrix-vector representation, which obtains the scalable and systolic Montgomery multiplier in a flexible manner, and can adapt to the required precision. Analytical results indicate that the proposed multiplier over the generic field of GF(2m) has a latency of d+n(2n+1), where n = m / d , and d denotes the selected digital size. The latency is reduced to d+n(n+1) clock cycles when the field is constructed from generalized equally-spaced polynomials. Since the selected digital size is d ≥5 bits, the proposed architectures have lower time-space complexity than traditional digit-serial multipliers. Moreover, the proposed architectures have regularity, modularity and local interconnect ability, making them very suitable for VLSI implementation.

2981-3000hit(5900hit)