The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] compatibility(47hit)

1-20hit(47hit)

  • Unveiling Python Version Compatibility Challenges in Code Snippets on Stack Overflow Open Access

    Shiyu YANG  Tetsuya KANDA  Daniel M. GERMAN  Yoshiki HIGO  

     
    PAPER-Software Engineering

      Pubricized:
    2024/04/16
      Vol:
    E107-D No:8
      Page(s):
    1007-1015

    Stack Overflow, a leading Q&A platform for developers, is a substantial reservoir of Python code snippets. Nevertheless, the incompatibility issues between Python versions, particularly Python 2 and Python 3, introduce substantial challenges that can potentially jeopardize the utility of these code snippets. This empirical study dives deep into the challenges of Python version inconsistencies on the interpretation and application of Python code snippets on Stack Overflow. Our empirical study exposes the prevalence of Python version compatibility issues on Stack Overflow. It further emphasizes an apparent deficiency in version-specific identification, a critical element that facilitates the identification and utilization of Python code snippets. These challenges, primarily arising from the lack of backward compatibility between Python’s major versions, pose significant hurdles for developers relying on Stack Overflow for code references and learning. This study, therefore, signifies the importance of proactively addressing these compatibility issues in Python code snippets. It advocates for enhanced tools and strategies to assist developers in efficiently navigating through the Python version complexities on platforms like Stack Overflow. By highlighting these concerns and providing a potential remedy, we aim to contribute to a more efficient and effective programming experience on Stack Overflow and similar platforms.

  • Ground Test of Radio Frequency Compatibility for Cn-Band Satellite Navigation and Microwave Landing System Open Access

    Ruihua LIU  Yin LI  Ling ZOU  Yude NI  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/05/19
      Vol:
    E105-B No:12
      Page(s):
    1580-1588

    Testing the radio frequency compatibility between Cn-band Satellite Navigation and Microwave Landing System (MLS) has included establishing a specific interference model and reporting the effect of such interference. This paper considers two interference scenarios according to the interfered system. By calculating the Power Flux Density (PFD) values, the interference for Cn-band satellite navigation downlink signal from several visible space stations on MLS service is evaluated. Simulation analysis of the interference for MLS DPSK-data word signal and scanning signal on Cn-band satellite navigation signal is based on the Spectral Separation Coefficient (SSC) and equivalent Carrier-to-Noise Ratio methodologies. Ground tests at a particular military airfield equipped with MLS ground stations were successfully carried out, and some measured data verified the theoretical and numerical results. This study will certainly benefit the design of Cn-band satellite navigation signals and guide the interoperability and compatibility research of Cn-band satellite navigation and MLS.

  • Effect of Complex Permeability on Circuit Parameters of CPW with Magnetic Noise Suppression Sheet

    Sho MUROGA  Motoshi TANAKA  Takefumi YOSHIKAWA  Yasushi ENDO  

     
    PAPER

      Pubricized:
    2020/04/08
      Vol:
    E103-B No:9
      Page(s):
    899-902

    An effect of complex permeability of noise suppression sheets (NSS) on circuit parameters was investigated by a magnetic circuit analysis using cross-sectional size and material parameters. The series resistance and inductance of the coplanar waveguide (CPW) with a NSS considering the effect of the complex permeability of the NSS were quantitatively estimated. The result indicated that the imaginary and real part of the effective permeability affected the resistance and inductance, respectively. Furthermore, this analysis was applied to an 8-µm-wide CPW with a 0.5-µm-thick Co85Zr3Nb12 film for quantitative estimation of the resistance, the inductance and the characteristic impedance. The estimated parameters were almost similar to the measured values. These results showed that the frequency characteristics of the circuit parameters could be controlled by changing size and material parameters.

  • Evaluation of Electromagnetic Noise Emitted from Light-Emitting Diode (LED) Lamps and Compatibility with Wireless Medical Telemetry Service

    Kai ISHIDA  Ifong WU  Kaoru GOTOH  Yasushi MATSUMOTO  

     
    PAPER

      Pubricized:
    2019/12/04
      Vol:
    E103-B No:6
      Page(s):
    637-644

    Wireless medical telemetry service (WMTS) is an important wireless communication system in healthcare facilities. Recently, the potential for electromagnetic interference by noise emitted by switching regulators installed in light-emitting diode (LED) lamps has been a serious problem. In this study, we evaluated the characteristics of the electromagnetic noise emitted from LED lamps and its effect on WMTS. Switching regulators generally emit wide band impulsive noise whose bandwidth reaches 400MHz in some instances owing to the switching operation, but this impulsive nature is difficult to identify in the reception of WMTS because the bandwidth of WMTS is much narrower than that of electromagnetic noise. Gaussian approximation (GA) can be adopted for band-limited electromagnetic noise whose characteristics have no repetitive variation. On the other hand, GA with the impulsive correction factor (ICF) can be adopted for band-limited electromagnetic noise that has repetitive variation. We investigate the minimum receiver sensitivity of WMTS for it to be affected by electromagnetic noise emitted from LED lamps. The required carrier-to-noise power ratio (CNR) of Gaussian noise and electromagnetic noise for which GA can be adopted was approximately 15dB, but the electromagnetic noise for which GA with the ICF can be adopted was 3 to 4dB worse. Moreover, the spatial distribution of electromagnetic noise surrounding an LED lamp installation was measured. Finally, we roughly estimated the offset distance between the receiving antenna of WMTS and LED lamps when a WMTS signal of a certain level was added in a clinical setting using our experimental result for the required CNR.

  • Two-Layer Near-Lossless HDR Coding Using Zero-Skip Quantization with Backward Compatibility to JPEG

    Hiroyuki KOBAYASHI  Osamu WATANABE  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1842-1848

    We propose an efficient two-layer near-lossless coding method using an extended histogram packing technique with backward compatibility to the legacy JPEG standard. The JPEG XT, which is the international standard to compress HDR images, adopts a two-layer coding method for backward compatibility to the legacy JPEG standard. However, there are two problems with this two-layer coding method. One is that it does not exhibit better near-lossless performance than other methods for HDR image compression with single-layer structure. The other problem is that the determining the appropriate values of the coding parameters may be required for each input image to achieve good compression performance of near-lossless compression with the two-layer coding method of the JPEG XT. To solve these problems, we focus on a histogram-packing technique that takes into account the histogram sparseness of HDR images. We used zero-skip quantization, which is an extension of the histogram-packing technique proposed for lossless coding, for implementing the proposed near-lossless coding method. The experimental results indicate that the proposed method exhibits not only a better near-lossless compression performance than that of the two-layer coding method of the JPEG XT, but also there are no issue regarding the combination of parameter values without losing backward compatibility to the JPEG standard.

  • In Situ Measurement of Radiated Emissions Based on Array Signal Processing and Adaptive Noise Cancellation

    Peng LI  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  Peng HU  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:4
      Page(s):
    371-379

    This paper presents a method combining array signal processing and adaptive noise cancellation to suppress unwanted ambient interferences in in situ measurement of radiated emissions of equipment. First, the signals received by the antenna array are processed to form a main data channel and an auxiliary data channel. The main channel contains the radiated emissions of the equipment under test and the attenuated ambient interferences. The auxiliary channel only contains the attenuated ambient interferences. Then, the adaptive noise cancellation technique is used to suppress the ambient interferences based on the correlation of the interferences in the main and auxiliary channels. The proposed method overcomes the problem that the ambient interferences in the two channels of the virtual chamber method are not correlated, and realizes the suppression of multi-source ambient noises in the use of fewer array elements. The results of simulation and experiment show that the proposed method can effectively extract radiated emissions of the equipment under test in complex electromagnetic environment. Finally, discussions on the effect of the beam width of the main channel and the generalization of the proposed method to three dimensionally distributed signals are addressed.

  • Introduction to Electromagnetic Information Security Open Access

    Yu-ichi HAYASHI  Naofumi HOMMA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/08/17
      Vol:
    E102-B No:1
      Page(s):
    40-50

    With the rising importance of information security, the necessity of implementing better security measures in the physical layer as well as the upper layers is becoming increasing apparent. Given the development of more accurate and less expensive measurement devices, high-performance computers, and larger storage devices, the threat of advanced attacks at the physical level has expanded from the military and governmental spheres to commercial products. In this paper, we review the issue of information security degradation through electromagnetic (EM)-based compromising of security measures in the physical layer (i.e., EM information security). Owing to the invisibility of EM radiation, such attacks can be serious threats. We first introduce the mechanism of information leakage through EM radiation and interference and then present possible countermeasures. Finally, we explain the latest research and standardization trends related to EM information security.

  • Two-Layer Lossless HDR Coding Using Histogram Packing Technique with Backward Compatibility to JPEG

    Osamu WATANABE  Hiroyuki KOBAYASHI  Hitoshi KIYA  

     
    PAPER-Image, Multimedia Environment Tech

      Vol:
    E101-A No:11
      Page(s):
    1823-1831

    An efficient two-layer coding method using the histogram packing technique with the backward compatibility to the legacy JPEG is proposed in this paper. The JPEG XT, which is the international standard to compress HDR images, adopts two-layer coding scheme for backward compatibility to the legacy JPEG. However, this two-layer coding structure does not give better lossless performance than the other existing methods for HDR image compression with single-layer structure. Moreover, the lossless compression of the JPEG XT has a problem on determination of the coding parameters; The lossless performance is affected by the input images and/or the parameter values. That is, finding appropriate combination of the values is necessary to achieve good lossless performance. It is firstly pointed out that the histogram packing technique considering the histogram sparseness of HDR images is able to improve the performance of lossless compression. Then, a novel two-layer coding with the histogram packing technique and an additional lossless encoder is proposed. The experimental results demonstrate that not only the proposed method has a better lossless compression performance than that of the JPEG XT, but also there is no need to determine image-dependent parameter values for good compression performance without losing the backward compatibility to the well known legacy JPEG standard.

  • Establishment of EMC Research in Japan and its Future Prospects Open Access

    Osamu FUJIWARA  

     
    INVITED SURVEY PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/03/27
      Vol:
    E100-B No:9
      Page(s):
    1623-1632

    Systematic research on electromagnetic compatibility (EMC) in Japan started in 1977 by the establishment of a technical committee on “environmental electromagnetic engineering” named EMCJ, which was founded both in the Institute of Electronics and Communication Engineers or the present IEICE (Institute of Electronics, Information and Communication Engineers) and in the Institute of Electrical Engineers of Japan or the IEEJ. The research activities have been continued as the basic field of interdisciplinary study to harmonize even in the electromagnetic (EM) environment where radio waves provide intolerable EM disturbances to electronic equipment and to that environment itself. The subjects and their outcomes which the EMCJ has dealt with during about 40 years from the EMCJ establishment include the evaluation of EM environment, EMC of electric and electronic equipment, and EMC of biological effects involving bioelectromagnetics and so on. In this paper, the establishment history and structure of the EMCJ are reviewed along with the change in activities, and topics of the technical reports presented at EMCJ meetings from 2006 to 2016 are surveyed. In addition, internationalization and its related campaign are presented in conjunction with the EMCJ research activities, and the status quo of the EMCJ under the IEICE is also discussed along with the prospects.

  • Topics Arising from the WRC-15 with Respect to Satellite-Related Agenda Items Open Access

    Nobuyuki KAWAI  Satoshi IMATA  

     
    INVITED PAPER

      Vol:
    E99-B No:10
      Page(s):
    2113-2120

    Along with remarkable advancement of radiocommunication services including satellite services, the radio-frequency spectrum and geostationary-satellite orbit are getting congested. WRC-15 was held in November 2015 to study and implement efficient use of those natural resources. There were a number of satellite-related agenda items associated with frequency allocation, new usages of satellite communications and satellite regulatory issues. This paper overviews the outcome from these agenda items of WRC-15 as well as the agenda items for the next WRC (i.e. the WRC-19).

  • A Novel Test Data Compression Scheme for SoCs Based on Block Merging and Compatibility

    Tiebin WU  Hengzhu LIU  Botao ZHANG  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1452-1460

    This paper presents a novel test data compression scheme for SoCs based on block merging and compatibility. The technique exploits the properties of compatibility and inverse compatibility between consecutive blocks, consecutive merged blocks, and two halves of the encoding merged block itself to encode the pre-computed test data. The decompression circuit is simple to be implemented and has advantage of test-independent. In addition, the proposed scheme is applicable for IP cores in SoCs since it compresses the test data without requiring any structural information of the circuit under test. Experimental results demonstrate that the proposed technique can achieve an average compression ratio up to 68.02% with significant low test application time.

  • A Method for Determination of GNSS Radio Frequency Compatibility Threshold and Its Assessment

    Wei LIU  Yuan HU  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E97-B No:5
      Page(s):
    1103-1111

    With the development of global navigation satellite systems (GNSS), the interference among global navigation satellite systems, known as the radio frequency compatibility problem, has become a matter of great concern to system providers and user communities. The acceptable compatibility threshold should be determined in the radio frequency compatibility assessment process. However, there is no common standard for the acceptable threshold in the radio frequency compatibility assessment. This paper firstly introduces the comprehensive radio frequency compatibility methodology combining the spectral separation coefficient (SSC) and code tracking spectral sensitivity coefficient (CT_SSC). Then, a method for determination of the acceptable compatibility threshold is proposed. The proposed method considers the receiver processing phase including acquisition, code and carrier tracking and data demodulation. Simulations accounting for the interference effects are carried out at each time step and every place on earth. The simulations mainly consider the signals of GPS, Galileo and BeiDou Navigation Satellite System (BDS) in the L1 band. Results show that all of the sole systems are compatible with other GNSS systems with respect to a special receiver configuration used in the simulations.

  • Coordination of Local Process Views in Interorganizational Business Process

    Donghui LIN  Toru ISHIDA  

     
    PAPER

      Vol:
    E97-D No:5
      Page(s):
    1119-1126

    Collaborative business has been increasingly developing with the environment of globalization and advanced information technologies. In a collaboration environment with multiple organizations, participants from different organizations always have different views about modeling the overall business process due to different knowledge and cultural backgrounds. Moreover, flexible support, privacy preservation and process reuse are important issues that should be considered in business process management across organizational boundaries. This paper presents a novel approach of modeling interorganizational business process for collaboration. Our approach allows for modeling loosely coupled interorganizational business process considering different views of organizations. In the proposed model, organizations have their own local process views of modeling business process instead of sharing pre-defined global processes. During process cooperation, local process of an organization can be invisible to other organizations. Further, we propose the coordination mechanisms for different local process views to detect incompatibilities among organizations. We illustrate our proposed approach by a case study of interorganizational software development collaboration.

  • AC Power Supply Noise Simulation of CMOS Microprocessor with LSI Chip-Package-Board Integrated Model

    Kumpei YOSHIKAWA  Kouji ICHIKAWA  Makoto NAGATA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    264-271

    An LSI Chip-Package-Board integrated power noise simulation model and its validity is discussed in this paper. A unified power delivery network (PDN) of LSI chip, package, and printed circuit board (PCB) is connected with on-chip power supply current models with capacitor charging expression. The proposed modeling flow is demonstrated for the 32-bit microprocessor in a 1.0V 90nm CMOS technology. The PDN of the system that includes a chip, bonding wires and a printed circuit board is modeled in an equivalent circuit. The on-chip power supply noise monitoring technique and the magnetic probe method is applied for validating simulation results. Simulations and measurements explore power supply noise generation with the dependency on operating frequencies in the wide range from 10MHz to 300MHz, under the operation mode of dynamic frequency scaling, and in the long time operation with various operation codes. It is confirmed that the proposed power supply noise simulation model is helpful for the noise estimation throughout the design phase of the LSI system.

  • Techniques of Electromagnetic Compatibility Model Synthesis Based on On-Site Measurement Data

    Gaosheng LI  Peiguo LIU  Yan LI  Zhonghao LU  Dongming ZHOU  Yujian QIN  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E96-B No:9
      Page(s):
    2251-2260

    Regular on-site testing is an elementary means to obtain real-time data and state of Electromagnetic Compatibility (EMC) of electronics systems. Nowadays, there is a lot of measured EMC data while the application of the data is insufficient. So we put forward the concept of EMC model synthesis. To carry out EMC data mining with measured electromagnetic data, we can build or modify models and synthesize variation rules of electromagnetic parameters of equipment and EMC performance of systems and platforms, then realize the information synthesis and state prediction. The concept of EMC reliability is brought forward together with the definition and description of parameters such as invalidation rate and EMC lifetime. We studied the application of statistical algorithms and Artificial Neural Network (ANN) in model synthesis. Operating flows and simulation results as well as measured data are presented. Relative research can support special measurement, active management and predictive maintenance and replenishment in the area of EMC.

  • Novel Tunneling Field-Effect Transistor with Sigma-Shape Embedded SiGe Sources and Recessed Channel

    Min-Chul SUN  Sang Wan KIM  Garam KIM  Hyun Woo KIM  Hyungjin KIM  Byung-Gook PARK  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    639-643

    A novel tunneling field-effect transistor (TFET) featuring the sigma-shape embedded SiGe sources and recessed channel is proposed. The gate facing the source effectively focuses the E-field at the tip of the source and eliminates the gradual turn-on issue of planar TFETs. The fabrication scheme modified from the state-of-the-art 45 nm/32 nm CMOS technology flows provides a unique benefit in the co-integrability and the control of ID-VGS characteristics. The feasibility is verified with TCAD process simulation of the device with 14 nm of the gate dimension. The device simulation shows 5-order change in the drain current with a gate bias change less than 300 mV.

  • Co-simulation of On-Chip and On-Board AC Power Noise of CMOS Digital Circuits

    Kumpei YOSHIKAWA  Yuta SASAKI  Kouji ICHIKAWA  Yoshiyuki SAITO  Makoto NAGATA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2284-2291

    Capacitor charging modeling efficiently and accurately represents power consumption current of CMOS digital circuits and actualizes co-simulation of AC power noise including the interaction with on-chip and on-board integrated power delivery network (PDN). It is clearly demonstrated that the AC power noise is dominantly characterized by the frequency-dependent impedance of PDN and also by the operating frequency of circuits as well. A 65 nm CMOS chip exhibits the AC power noise components in substantial relation with the parallel resonance of the PDN seen from on-chip digital circuits. An on-chip noise monitor measures in-circuit power supply voltage, while a near-field magnetic probing derives on-board power supply current. The proposed co-simulation well matches the power noise measurements. The proposed AC noise co-simulation will be essentially applicable in the design of PDNs toward on-chip power supply integrity (PSI) and off-chip electromagnetic compatibility (EMC).

  • A New Approach to Modeling the Impact of EMI on MOSFET DC Behavior

    Raul FERNANDEZ-GARCIA  Ignacio GIL  Alexandre BOYER  Sonia BENDHIA  Bertrand VRIGNON  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:12
      Page(s):
    1906-1908

    A simple analytical model to predict the DC MOSFET behavior under electromagnetic interference (EMI) is presented. The model is able to describe the MOSFET performance in the linear and saturation regions under EMI disturbance applied to the gate. The model consists of a unique simple equivalent circuit based on a voltage dependent current source and a reduced number of parameters which can accurately predict the drift on the drain current due to the EMI source. The analytical approach has been validated by means of electric simulation and measurements and can be easily introduced in circuit simulators. The proposed modeling technique combined with the nth-power law model of the MOSFET without EMI, significantly improves its accuracy in comparison with the n-th power law directly applied to a MOSFET under EMI impact.

  • Design and Performance of Rate-Compatible Non-binary LDPC Convolutional Codes

    Hironori UCHIKAWA  Kenta KASAI  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E94-A No:11
      Page(s):
    2135-2143

    In this paper, we present a construction method of non-binary low-density parity-check (LDPC) convolutional codes. Our construction method is an extension of Felstrom and Zigangirov construction [1] for non-binary LDPC convolutional codes. The rate-compatibility of the non-binary convolutional code is also discussed. The proposed rate-compatible code is designed from one single mother (2,4)-regular non-binary LDPC convolutional code of rate 1/2. Higher-rate codes are produced by puncturing the mother code and lower-rate codes are produced by multiplicatively repeating the mother code. Simulation results show that non-binary LDPC convolutional codes of rate 1/2 outperform state-of-the-art binary LDPC convolutional codes with comparable constraint bit length. Also the derived low-rate and high-rate non-binary LDPC convolutional codes exhibit good decoding performance without loss of large gap to the Shannon limits.

  • The Field Uniformity Analysis in a Triangular Prism Reverberation Chamber with a QRD

    Jung-Hoon KIM  Hye-Kwang KIM  Eugene RHEE  Sung-Il YANG  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E94-B No:1
      Page(s):
    334-337

    This letter presents the field uniformity characteristics of a triangular prism reverberation chamber. A reverberation chamber that generally uses a stirrer to create a uniform electric field inside is an alternative to the semi-anechoic chamber for an electromagnetic compatibility test. To overcome the size and maintenance problems of a stirrer, we propose to replace it with a Quadratic Residue Diffuser which is commonly used in acoustics. To confirm that the diffuser is a valid alternative to the stirrer, a diffuser and an equilateral triangular prism reverberation chamber are designed and fabricated for 2.3-3.0 GHz operation. To investigate the field uniformity characteristics by varying the location of the transmitting antenna, both simulation and measurement in the triangular prism reverberation chamber were also done at its two positions, respectively. A commercial program XFDTD 6.2, engaging the finite difference time domain (FDTD), is used for simulation and a cumulative probability distribution, which the IEC 61000-4-21 recommends, is used to evaluate the field uniformity. Both simulation and measurement results show that the field uniformity in the chamber satisfies the international standard requirement of 6 dB tolerance and 3dB standard deviation, which means that a diffuser can be substituted for a stirrer.

1-20hit(47hit)