The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] encoding(112hit)

21-40hit(112hit)

  • QP Selection Optimization for Intra-Frame Encoding Based on Constant Perceptual Quality

    Chao WANG  Xuanqin MOU  Lei ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/11/17
      Vol:
    E99-D No:2
      Page(s):
    443-453

    In lossy image/video encoding, there is a compromise between the number of bits and the extent of distortion. Optimizing the allocation of bits to different sources, such as frames or blocks, can improve the encoding performance. In intra-frame encoding, due to the dependency among macro blocks (MBs) introduced by intra prediction, the optimization of bit allocation to the MBs usually has high complexity. So far, no practical optimal bit allocation methods for intra-frame encoding exist, and the commonly used method for intra-frame encoding is the fixed-QP method. We suggest that the QP selection inside an image/a frame can be optimized by aiming at the constant perceptual quality (CPQ). We proposed an iteration-based bit allocation scheme for H.264/AVC intra-frame encoding, in which all the local areas (which is defined by a group of MBs (GOMBs) in this paper) in the frame are encoded to have approximately the same perceptual quality. The SSIM index is used to measure the perceptual quality of the GOMBs. The experimental results show that the encoding performance on intra-frames can be improved greatly by the proposed method compared with the fixed-QP method. Furthermore, we show that the optimization on the intra-frame can bring benefits to the whole sequence encoding, since a better reference frame can improve the encoding of the subsequent frames. The proposed method has acceptable encoding complexity for offline applications.

  • Enhancing Stereo Signals with High-Order Ambisonics Spatial Information Open Access

    Jorge TREVINO  Shuichi SAKAMOTO  Junfeng LI  Yôiti SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    41-49

    There is a strong push towards the ultra-realistic presentation of multimedia contents made possible by the latest advances in computational and signal processing technologies. Three-dimensional sound presentation is necessary to convey a natural and rich multimedia experience. Promising ways to achieve this include the sound field reproduction technique known as high-order Ambisonics (HOA). While these advanced methods are now within the capabilities of consumer-level processing systems, their adoption is hindered by the lack of contents. Production and coding of the audio components in multimedia focus on traditional formats such as stereophonic sound. Mainstream audio codecs and media such as CDs or DVDs do not support advanced, rich contents such as HOA encodings. To ameliorate this problem and speed up the adoption of spatial sound technologies, this paper proposes a novel way to downmix HOA contents into a stereo signal. The resulting data can be distributed using conventional methods such as audio CDs or as the audio component of an internet video stream. The results can be listened to using legacy stereo reproduction systems. However, they include spatial information encoded as the inter-channel level and phase differences. The proposed method consists of a downmixing filterbank which independently modulate inter-channel differences at each frequency bin. The proposal is evaluated using simple test signals and found to outperform conventional methods such as matrix-encoded surround and the Ambisonics UHJ format in terms of spatial resolution. The proposal can be coupled with a previously presented method to recover HOA signals from stereo recordings. The resulting system allows for the preservation of full-surround spatial information in ultra-realistic contents when they are transferred using a stereo stream. Simulation results show that a compatible decoder can accurately recover up to five HOA channels from a stereo signal (2nd order HOA data in the horizontal plane).

  • Towards Position-Aware Symbol-Based Searches on Encrypted Data from Symmetric Predicate Encryption Schemes

    Fu-Kuo TSENG  Rong-Jaye CHEN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:1
      Page(s):
    426-428

    Symmetric predicate encryption schemes support a rich class of predicates over keyword ciphertexts while preserving both keyword privacy and predicate privacy. Most of these schemes treat each keyword as the smallest unit to be processed in the generation of ciphertexts and predicate tokens. To extend the class of predicates, we treat each symbol of a keyword as the smallest unit to be processed. In this letter, we propose a novel encoding to construct a symmetric inner-product encryption scheme for position-aware symbol-based predicates. The resulting scheme can be applied to a number of secure filtering and online storage services.

  • Cryptanalysis and Improvement of an Encoding Method for Private-Key Hidden Vector Encryptions

    Fu-Kuo TSENG  Rong-Jaye CHEN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:9
      Page(s):
    1982-1984

    A predicate encryption scheme enables the owner of the master key to enforce fine-grained access control on encrypted cloud data through the delegation of predicate tokens to cloud storages. In particular, Blundo et al. proposed a construction where a predicate token reveals partial information of the involved keywords to enable efficient operations on encrypted keywords. However, we found that a predicate token reveals more information than what was claimed because of the encoding scheme. In this letter, we not only analyze this extra information leakage but also present an improved encoding scheme for the Blundo et al's scheme and the other similar schemes to preserve predicate privacy.

  • A Local Program Insertion Scheme with a Rotate-and-Forward Strategy for Video Broadcasting

    Guo LI  Feng-Kui GONG  Na YANG  Yong WANG  Mohamed A. FARAH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:9
      Page(s):
    1882-1887

    A local program insertion (LPI) scheme for video broadcasting systems is proposed by using a novel rotate-and-forward strategy, which can be widely used when a local TV tower (LT) wants to insert its own TV signals into the signals from the main TV tower (MT) without any additional resources. In the proposed LPI scheme, the bit stream of MT is firstly modulated and transmitted through coordinated constellation mapping, Alamouti encoding and OFDM modulation. Then, the LT receives the MT signals and demodulates them into constellation symbols. Finally, the bit stream of LT is mapped as “rotate bit” to rotate the demodulated MT symbols and forward to the users. We show that our proposed LPI scheme does not require extra time or frequency resources and it is also a complexity-reduced scheme for the local TV tower (LT) since bit-level decoding is not required at the LT. In addition, it can increase the network exchanging capacity in term of bits per channel use (bpcu).

  • The Enhanced Encapsulation Architecture to Improve TV Metadata Encoding Performance by Schema Optimizing Mechanism

    Bongjin OH  Jongyoul PARK  Sunggeun JIN  Youngguk HA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2015/05/22
      Vol:
    E98-D No:8
      Page(s):
    1449-1455

    We propose simple but efficient encapsulation architecture. In the architecture, clients can better decode Extensible Markup Language (XML) based service information for TV contents with schema digest. Our experimental results show the superiority of the proposed architecture by comparing the compression ratios and decoding times of the proposed architecture and the existing architectures.

  • Fast Transform Unit Decision for HEVC

    Jangbyung KANG  Jin-Soo KIM  Jae-Gon KIM  Haechul CHOI  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:8
      Page(s):
    2205-2208

    For the High Efficiency Video Coding (HEVC) standard, a fast transform unit (TU) decision method is proposed. HEVC defines the TU representing a region sharing the same transformation, and it supports various transform sizes from 4×4 to 32×32 by using a quadtree of TUs. The various sizes of TUs can provide good coding efficiency, whereas it may dramatically increase encoding complexity. Assuming that a TU with highly compacted energy is unlikely to be split, the proposed method determines an appropriate TU size according to the position of the last non-zero transform coefficient. Experimental results show that this reduces encoding run time by 17.2% with a negligible coding loss of 0.78% BD-rate for the random-access scenario.

  • Efficient Linear Time Encoding for LDPC Codes

    Tomoharu SHIBUYA  Kazuki KOBAYASHI  

     
    PAPER-Coding Theory

      Vol:
    E97-A No:7
      Page(s):
    1556-1567

    In this paper, we propose a new encoding method applicable to any linear codes over arbitrary finite field whose computational complexity is O(δ*n) where δ* and n denote the maximum column weight of a parity check matrix of a code and the code length, respectively. This means that if a code has a parity check matrix with the constant maximum column weight, such as LDPC codes, it can be encoded with O(n) computation. We also clarify the relation between the proposed method and conventional methods, and compare the computational complexity of those methods. Then we show that the proposed encoding method is much more efficient than the conventional ones.

  • High-Throughput Partially Parallel Inter-Chip Link Architecture for Asynchronous Multi-Chip NoCs

    Naoya ONIZAWA  Akira MOCHIZUKI  Hirokatsu SHIRAHAMA  Masashi IMAI  Tomohiro YONEDA  Takahiro HANYU  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:6
      Page(s):
    1546-1556

    This paper introduces a partially parallel inter-chip link architecture for asynchronous multi-chip Network-on-Chips (NoCs). The multi-chip NoCs that operate as a large NoC have been recently proposed for very large systems, such as automotive applications. Inter-chip links are key elements to realize high-performance multi-chip NoCs using a limited number of I/Os. The proposed asynchronous link based on level-encoded dual-rail (LEDR) encoding transmits several bits in parallel that are received by detecting the phase information of the LEDR signals at each serial link. It employs a burst-mode data transmission that eliminates a per-bit handshake for a high-speed operation, but the elimination may cause data-transmission errors due to cross-talk and power-supply noises. For triggering data retransmission, errors are detected from the embedded phase information; error-detection codes are not used. The throughput is theoretically modelled and is optimized by considering the bit-error rate (BER) of the link. Using delay parameters estimated for a 0.13 µm CMOS technology, the throughput of 8.82 Gbps is achieved by using 10 I/Os, which is 90.5% higher than that of a link using 9 I/Os without an error-detection method operating under negligible low BER (<10-20).

  • A Compact Encoding of Rectangular Drawings with Edge Lengths

    Shin-ichi NAKANO  Katsuhisa YAMANAKA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1032-1035

    A rectangular drawing is a plane drawing of a graph in which every face is a rectangle. Rectangular drawings have an application for floorplans, which may have a huge number of faces, so compact code to store the drawings is desired. The most compact code for rectangular drawings needs at most 4f-4 bits, where f is the number of inner faces of the drawing. The code stores only the graph structure of rectangular drawings, so the length of each edge is not encoded. A grid rectangular drawing is a rectangular drawing in which each vertex has integer coordinates. To store grid rectangular drawings, we need to store some information for lengths or coordinates. One can store a grid rectangular drawing by the code for rectangular drawings and the width and height of each inner face. Such a code needs 4f-4 + f⌈log W⌉ + f⌈log H⌉ + o(f) + o(W) + o(H) bits*, where W and H are the maximum width and the maximum height of inner faces, respectively. In this paper we design a simple and compact code for grid rectangular drawings. The code needs 4f-4 + (f+1)⌈log L⌉ + o(f) + o(L) bits for each grid rectangular drawing, where L is the maximum length of edges in the drawing. Note that L ≤ max{W,H} holds. Our encoding and decoding algorithms run in O(f) time.

  • All-Zero Block-Based Optimization for Quadtree-Structured Prediction and Residual Encoding in High Efficiency Video Coding

    Guifen TIAN  Xin JIN  Satoshi GOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:4
      Page(s):
    769-779

    High Efficiency Video Coding (HEVC) outperforms H.264 High Profile with bitrate saving of about 43%, mostly because block sizes for hybrid prediction and residual encoding are recursively chosen using a quadtree structure. Nevertheless, the exhaustive quadtree-based partition is not always necessary. This paper takes advantage of all-zero residual blocks at every quadtree depth to accelerate the prediction and residual encoding processes. First, we derive a near-sufficient condition to detect variable-sized all-zero blocks (AZBs). For these blocks, discrete cosine transform (DCT) and quantization can be skipped. Next, using the derived condition, we propose an early termination technique to reduce the complexity for motion estimation (ME). More significantly, we present a two-dimensional pruning technique based on AZBs to constrain prediction units (PU) that contribute negligibly to rate-distortion (RD) performance. Experiments on a wide range of videos with resolution ranging from 416240 to 4k2k, show that the proposed scheme can reduce computational complexity for the HEVC encoder by up to 70.46% (50.34% on average), with slight loss in terms of the peak signal-to-noise ratio (PSNR) and bitrate. The proposal also outperforms other state-of-the-art methods by achieving greater complexity reduction and improved bitrate performance.

  • Design of Quasi-Cyclic Cycle LDPC Codes over GF(q)

    ShuKai HU  Chao CHEN  Rong SUN  XinMei WANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:3
      Page(s):
    983-986

    Quasi-cyclic (QC) low-density parity-check (LDPC) codes have several appealing properties regarding decoding, storage requirements and encoding aspects. In this paper, we focus on the QC LDPC codes over GF(q) whose parity-check matrices have fixed column weight j = 2. By investigating two subgraphs in the Tanner graphs of the corresponding base matrices, we derive two upper bounds on the minimum Hamming distance for this class of codes. In addition, a method is proposed to construct QC LDPC codes over GF(q), which have good Hamming distance distributions. Simulations show that our designed codes have good performance.

  • Ring Theoretic Approach to Reversible Codes Based on Circulant Matrices

    Tomoharu SHIBUYA  

     
    PAPER-Coding Theory

      Vol:
    E94-A No:11
      Page(s):
    2121-2126

    Recently, Haley and Grant introduced the concept of reversible codes – a class of binary linear codes that can reuse the decoder architecture as the encoder and encodable by the iterative message-passing algorithm based on the Jacobi method over F2. They also developed a procedure to construct parity check matrices of a class of reversible codes named type-I reversible codes by utilizing properties specific to circulant matrices. In this paper, we refine a mathematical framework for reversible codes based on circulant matrices through a ring theoretic approach. This approach enables us to clarify the necessary and sufficient condition on which type-I reversible codes exist. Moreover, a systematic procedure to construct all circulant matrices that constitute parity check matrices of type-I reversible codes is also presented.

  • Implementation of a Low-Power FPGA Based on Synchronous/Asynchronous Hybrid Architecture

    Shota ISHIHARA  Ryoto TSUCHIYA  Yoshiya KOMATSU  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:10
      Page(s):
    1669-1679

    This paper presents a low-power FPGA based on mixed synchronous/asynchronous design. The proposed FPGA consists of several sections which consist of logic blocks, and each section can be used as either a synchronous circuit or an asynchronous circuit according to its workload. An asynchronous circuit is power-efficient for a low-workload section since it does not require the clock tree which always consumes the power. On the other hand, a synchronous circuit is power-efficient for a high-workload section because of its simple hardware. The major consideration is designing an area-efficient synchronous/asynchronous hybrid logic block. This is because the hardware amount of the asynchronous circuit is about double that of the synchronous circuit, and the typical implementation wastes half of the hardware in synchronous mode. To solve this problem, we propose a hybrid logic block that can be used as either a single asynchronous logic block or two synchronous logic blocks. The proposed FPGA is fabricated using a 65-nm CMOS process. When the workload of a section is below 22%, asynchronous mode is more power-efficient than synchronous mode. Otherwise synchronous mode is more power-efficient.

  • On the Security of BioEncoding Based Cancelable Biometrics

    Osama OUDA  Norimichi TSUMURA  Toshiya NAKAGUCHI  

     
    PAPER-Information Network

      Vol:
    E94-D No:9
      Page(s):
    1768-1777

    Proving the security of cancelable biometrics and other template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a cancelable biometrics scheme that has been proposed recently to protect biometric templates represented as binary strings like iris codes. Unlike other template protection schemes, BioEncoding does not require user-specific keys or tokens. Moreover, it satisfies the requirements of untraceable biometrics without sacrificing the matching accuracy. However, the security of BioEncoding against smart attacks, such as correlation and optimization-based attacks, has to be proved before recommending it for practical deployment. In this paper, the security of BioEncopding, in terms of both non-invertibility and privacy protection, is analyzed. First, resistance of protected templates generated using BioEncoding against brute-force search attacks is revisited rigorously. Then, vulnerabilities of BioEncoding with respect to correlation attacks and optimization based attacks are identified and explained. Furthermore, an important modification to the BioEncoding algorithm is proposed to enhance its security against correlation attacks. The effect of integrating this modification into BioEncoding is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed modification and show that it has no negative impact on the matching accuracy.

  • New Encoding Method of Parameter for Dynamic Encoding Algorithm for Searches (DEAS)

    Youngsu PARK  Jong-Wook KIM  Johwan KIM  Sang Woo KIM  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E94-A No:9
      Page(s):
    1804-1816

    The dynamic encoding algorithm for searches (DEAS) is a recently developed algorithm that comprises a series of global optimization methods based on variable-length binary strings that represent real variables. It has been successfully applied to various optimization problems, exhibiting outstanding search efficiency and accuracy. Because DEAS manages binary strings or matrices, the decoding rules applied to the binary strings and the algorithm's structure determine the aspects of local search. The decoding rules used thus far in DEAS have some drawbacks in terms of efficiency and mathematical analysis. This paper proposes a new decoding rule and applies it to univariate DEAS (uDEAS), validating its performance against several benchmark functions. The overall optimization results of the modified uDEAS indicate that it outperforms other metaheuristic methods and obviously improves upon older versions of DEAS series.

  • Well-Structured Modified Booth Multiplier and Its Application to Reconfigurable MAC Design

    Li-Rong WANG  Ming-Hsien TU  Shyh-Jye JOU  Chung-Len LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:6
      Page(s):
    1112-1119

    This paper presents a well-structured modified Booth encoding (MBE) multiplier which is applied in the design of a reconfigurable multiply-accumulator (MAC) core. The multiplier adopts an improved Booth encoder and selector to achieve an extra-row-removal and uses a hybrid approach in the two's complementation circuit to reduce the area and improve the speed. The multiplier is used to form a 32-bit reconfigurable MAC core which can be flexibly configured to execute one 3232, two 1616 or four 88 signed multiply-accumulation. Experimentally, when implemented with a 130 nm CMOS single-Vt standard cell library, the multiplier achieved a 15.8% area saving and 11.7% power saving over the classical design, and the reconfigurable MAC achieved a 4.2% area and a 7.4% power saving over the MAC design published so far if implemented with a mixed-Vt standard cell library.

  • Multiple Region-of-Interest Based H.264 Encoder with a Detection Architecture in Macroblock Level Pipelining

    Tianruo ZHANG  Chen LIU  Minghui WANG  Satoshi GOTO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    401-410

    This paper proposes a region-of-interest (ROI) based H.264 encoder and the VLSI architecture of the ROI detection algorithm. In ROI based video coding system, pre-processing unit to detect ROI should only introduce low computational complexity overhead due to the low power requirement. The Macroblocks (MBs) in ROIs are detected sequentially in the same order of H.264 encoding to satisfy the MB level pipelining of ROI detector and H.264 encoder. ROI detection is performed in a novel estimation-and-verification process with an ROI contour template. Proposed architecture can be configured to detect either single ROI or multiple ROIs in each frame and the throughput of single detection mode is 5.5 times of multiple detection mode. 98.01% and 97.89% of MBs in ROIs can be detected in single and multiple detection modes respectively. Hardware cost of proposed architecture is only 4.68 k gates. Detection speed is 753 fps for CIF format video at the operation frequency of 200 MHz in multiple detection mode with power consumption of 0.47 mW. Compared with previous fast ROI detection algorithms for video coding application, the proposed architecture obtains more accurate and smaller ROI. Therefore, more efficient ROI based computation complexity and compression efficiency optimization can be implemented in H.264 encoder.

  • A Selective Block Encoding Scheme Based on Motion Information Feedback in Distributed Video Coding

    Jin-soo KIM  Jae-Gon KIM  Kwang-deok SEO  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E94-B No:3
      Page(s):
    860-862

    We propose an efficient selective block encoding scheme with motion information feedback in distributed video coding (DVC). The proposed scheme estimates the spatial and temporal matching costs for each block in the side information (SI) and for the blocks with high matching costs, the motion information is provided to the encoder side to selectively encode the motion-compensated frame difference signal. Experimental results show that the proposed scheme outperforms the recently developed DVC algorithms.

  • Two-Way Parity Bit Correction Encoding Algorithm for Dual-Diagonal LDPC Codes

    Chia-Yu LIN  Chih-Chun WEI  Mong-Kai KU  

     
    PAPER-Coding Theory

      Vol:
    E94-A No:2
      Page(s):
    773-780

    In this paper, an efficient encoding scheme for dual-diagonal LDPC codes is proposed. Our two-way parity bit correction algorithm breaks up the data dependency within the encoding process to achieve higher throughput, lower latency and better hardware utilization. The proposed scheme can be directly applied to dual-diagonal codes without matrix modifications. FPGA encoder prototypes are implemented for IEEE 802.11n and 802.16e codes. Results show that the proposed architecture outperforms in terms of throughput and throughput/area ratio.

21-40hit(112hit)