The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] error(1060hit)

1-20hit(1060hit)

  • 6T-8T Hybrid SRAM for Lower-Power Neural-Network Processing by Lowering Operating Voltage Open Access

    Ji WU  Ruoxi YU  Kazuteru NAMBA  

     
    LETTER-Computer System

      Pubricized:
    2024/05/20
      Vol:
    E107-D No:9
      Page(s):
    1278-1280

    This letter introduces an innovation for the heterogeneous storage architecture of AI chips, specifically focusing on the integration of six transistors(6T) and eight transistors(8T) hybrid SRAM. Traditional approaches to reducing SRAM power consumption typically involve lowering the operating voltage, a method that often substantially diminishes the recognition rate of neural networks. However, the innovative design detailed in this letter amalgamates the strengths of both SRAM types. It operates at a voltage lower than conventional SRAM, thereby significantly reducing the power consumption in neural networks without compromising performance.

  • Error-Tolerance-Aware Write-Energy Reduction of MTJ-Based Quantized Neural Network Hardware Open Access

    Ken ASANO  Masanori NATSUI  Takahiro HANYU  

     
    PAPER

      Pubricized:
    2024/04/22
      Vol:
    E107-D No:8
      Page(s):
    958-965

    The development of energy-efficient neural network hardware using magnetic tunnel junction (MTJ) devices has been widely investigated. One of the issues in the use of MTJ devices is large write energy. Since MTJ devices show stochastic behaviors, a large write current with enough time length is required to guarantee the certainty of the information held in MTJ devices. This paper demonstrates that quantized neural networks (QNNs) exhibit high tolerance to bit errors in weights and an output feature map. Since probabilistic switching errors in MTJ devices do not have always a serious effect on the performance of QNNs, large write energy is not required for reliable switching operations of MTJ devices. Based on the evaluation results, we achieve about 80% write-energy reduction on buffer memory compared to the conventional method. In addition, it is demonstrated that binary representation exhibits higher bit-error tolerance than the other data representations in the range of large error rates.

  • Soft-Error Tolerance by Guard-Gate Structures on Flip-Flops in 22 and 65 nm FD-SOI Technologies Open Access

    Ryuichi NAKAJIMA  Takafumi ITO  Shotaro SUGITANI  Tomoya KII  Mitsunori EBARA  Jun FURUTA  Kazutoshi KOBAYASHI  Mathieu LOUVAT  Francois JACQUET  Jean-Christophe ELOY  Olivier MONTFORT  Lionel JURE  Vincent HUARD  

     
    PAPER

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:7
      Page(s):
    191-200

    We evaluated soft-error tolerance by heavy-ion irradiation test on three-types of flip-flops (FFs) named the standard FF (STDFF), the dual feedback recovery FF (DFRFF), and the DFRFF with long delay (DFRFFLD) in 22 and 65 nm fully-depleted silicon on insulator (FD-SOI) technologies. The guard-gate (GG) structure in DFRFF mitigates soft errors. A single event transient (SET) pulse is removed by the C-element with the signal delayed by the GG structure. DFRFFLD increases the GG delay by adding two more inverters as delay elements. We investigated the effectiveness of the GG structure in 22 and 65 nm. In 22 nm, Kr (40.3 MeV-cm2/mg) and Xe (67.2 MeV-cm2/mg) irradiation tests revealed that DFRFFLD has sufficient soft-error tolerance in outer space. In 65 nm, the relationship between GG delay and CS reveals the GG delay time which no error was observed under Kr irradiation.

  • Effects of Electromagnet Interference on Speed and Position Estimations of Sensorless SPMSM Open Access

    Yuanhe XUE  Wei YAN  Xuan LIU  Mengxia ZHOU  Yang ZHAO  Hao MA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2023/11/10
      Vol:
    E107-C No:5
      Page(s):
    124-131

    Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI.  When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.

  • A Lightweight Graph Neural Networks Based Enhanced Separated Detection Scheme for Downlink MIMO-SCMA Systems Open Access

    Zikang CHEN  Wenping GE  Henghai FEI  Haipeng ZHAO  Bowen LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:4
      Page(s):
    368-376

    The combination of multiple-input multiple-output (MIMO) technology and sparse code multiple access (SCMA) can significantly enhance the spectral efficiency of future wireless communication networks. However, the receiver design for downlink MIMO-SCMA systems faces challenges in developing multi-user detection (MUD) schemes that achieve both low latency and low bit error rate (BER). The separated detection scheme in the MIMO-SCMA system involves performing MIMO detection first to obtain estimated signals, followed by SCMA decoding. We propose an enhanced separated detection scheme based on lightweight graph neural networks (GNNs). In this scheme, we raise the concept of coordinate point relay and full-category training, which allow for the substitution of the conventional message passing algorithm (MPA) in SCMA decoding with image classification techniques based on deep learning (DL). The features of the images used for training encompass crucial information such as the amplitude and phase of estimated signals, as well as channel characteristics they have encountered. Furthermore, various types of images demonstrate distinct directional trends, contributing additional features that enhance the precision of classification by GNNs. Simulation results demonstrate that the enhanced separated detection scheme outperforms existing separated and joint detection schemes in terms of computational complexity, while having a better BER performance than the joint detection schemes at high Eb/N0 (energy per bit to noise power spectral density ratio) values.

  • Performance Comparison of the Two Reconstruction Methods for Stabilizer-Based Quantum Secret Sharing

    Shogo CHIWAKI  Ryutaroh MATSUMOTO  

     
    LETTER-Quantum Information Theory

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:3
      Page(s):
    526-529

    Stabilizer-based quantum secret sharing has two methods to reconstruct a quantum secret: The erasure correcting procedure and the unitary procedure. It is known that the unitary procedure has a smaller circuit width. On the other hand, it is unknown which method has smaller depth and fewer circuit gates. In this letter, it is shown that the unitary procedure has smaller depth and fewer circuit gates than the erasure correcting procedure which follows a standard framework performing measurements and unitary operators according to the measurements outcomes, when the circuits are designed for quantum secret sharing using the [[5, 1, 3]] binary stabilizer code. The evaluation can be reversed if one discovers a better circuit for the erasure correcting procedure which does not follow the standard framework.

  • Transmission Performance Evaluation of Local 5G Downlink Data Channel in SU-MIMO System under Outdoor Environments

    Hiroki URASAWA  Hayato SOYA  Kazuhiro YAMAGUCHI  Hideaki MATSUE  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    63-73

    We evaluated the transmission performance, including received power and transmission throughput characteristics, in 4×4 single-user multiple-input multiple-output (SU-MIMO) transmission for synchronous time division duplex (TDD) and downlink data channels in comparison with single-input single-output (SISO) transmission in an environment where a local 5G wireless base station was installed on the roof of a research building at our university. Accordingly, for the received power characteristics, the difference between the simulation value, which was based on the ray tracing method, and the experimental value at 32 points in the area was within a maximum difference of approximately 10 dB, and sufficient compliance was obtained. Regarding the transmission throughput versus received power characteristics, after showing a simulation method for evaluating throughput characteristics in MIMO, we compared the results with experimental results. The cumulative distribution function (CDF) of the transmission throughput shows that, at a CDF of 50%, in SISO transmission, the simulated value is approximately 115Mbps, and the experimental value is 105Mbps, within a difference of approximately 10Mbps. By contrast, in MIMO transmission, the simulation value is 380Mbps, and the experimental value is approximately 420Mbps, which is a difference of approximately 40Mbps. It was shown that the received power and transmission throughput characteristics can be predicted with sufficient accuracy by obtaining the delay profile and the system model at each reception point using the both ray tracing and MIMO simulation methods in actual environments.

  • Mechanisms to Address Different Privacy Requirements for Users and Locations

    Ryota HIRAISHI  Masatoshi YOSHIKAWA  Yang CAO  Sumio FUJITA  Hidehito GOMI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/09/25
      Vol:
    E106-D No:12
      Page(s):
    2036-2047

    The significance of individuals' location information has been increasing recently, and the utilization of such data has become indispensable for businesses and society. The possible uses of location information include personalized services (maps, restaurant searches and weather forecast services) and business decisions (deciding where to open a store). However, considering that the data could be exploited, users should add random noise using their terminals before providing location data to collectors. In numerous instances, the level of privacy protection a user requires depends on their location. Therefore, in our framework, we assume that users can specify different privacy protection requirements for each location utilizing the adversarial error (AE), and the system computes a mechanism to satisfy these requirements. To guarantee some utility for data analysis, the maximum error in outputting the location should also be output. In most privacy frameworks, the mechanism for adding random noise is public; however, in this problem setting, the privacy protection requirements and the mechanism must be confidential because this information includes sensitive information. We propose two mechanisms to address privacy personalization. The first mechanism is the individual exponential mechanism, which uses the exponential mechanism in the differential privacy framework. However, in the individual exponential mechanism, the maximum error for each output can be used to narrow down candidates of the actual location by observing outputs from the same location multiple times. The second mechanism improves on this deficiency and is called the donut mechanism, which uniformly outputs a random location near the location where the distance from the user's actual location is at the user-specified AE distance. Considering the potential attacks against the idea of donut mechanism that utilize the maximum error, we extended the mechanism to counter these attacks. We compare these two mechanisms by experiments using maps constructed from artificial and real world data.

  • Localization of a Moving Target Using the Sequence of FOA Measurements by a Moving Observation Platform

    Takeshi AMISHIMA  

     
    PAPER-Sensing

      Pubricized:
    2023/06/21
      Vol:
    E106-B No:11
      Page(s):
    1256-1265

    In this study, we propose a method for localizing an unknown moving emitter by measuring a sequence of the frequency-of-arrival using a single moving observation platform. Furthermore, we introduce the position and velocity errors of the moving observation platform into the theoretical localization error equation to analyze the effect of these errors on the localization accuracy without Monte-Carlo simulations. The proposed theoretical error equation can propagate toward the time direction; therefore, the theoretical localization error can be evaluated at an arbitral time. We demonstrate that the localization error value obtained by the proposed equation and the RMSE evaluated by the Monte-Carlo simulation sufficiently coincide with one another.

  • Joint BCH and XOR Decoding for Solid State Drives

    Naoko KIFUNE  Hironori UCHIKAWA  

     
    PAPER-Coding Theory

      Pubricized:
    2023/04/12
      Vol:
    E106-A No:10
      Page(s):
    1322-1329

    At a flash memory, each stored data frame is protected by error correction codes (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) codes from random errors. Exclusive-OR (XOR) based erasure codes like RAID-5 have also been employed at the flash memory to protect from memory block defects. Conventionally, the ECC and erasure codes are used separately since their target errors are different. Due to recent aggressive technology scaling, additional error correction capability for random errors is required without adding redundancy. We propose an algorithm to improve error correction capability by using XOR parity with a simple counter that counts the number of unreliable bits in the XOR stripe. We also propose to apply Chase decoding to the proposed algorithm. The counter makes it possible to reduce the false correction and execute the efficient Chase decoding. We show that combining the proposed algorithm with Chase decoding can significantly improve the decoding performance.

  • Write Variation & Reliability Error Compensation by Layer-Wise Tunable Retraining of Edge FeFET LM-GA CiM

    Shinsei YOSHIKIYO  Naoko MISAWA  Kasidit TOPRASERTPONG  Shinichi TAKAGI  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-C No:7
      Page(s):
    352-364

    This paper proposes a layer-wise tunable retraining method for edge FeFET Computation-in-Memory (CiM) to compensate the accuracy degradation of neural network (NN) by FeFET device errors. The proposed retraining can tune the number of layers to be retrained to reduce inference accuracy degradation by errors that occur after retraining. Weights of the original NN model, accurately trained in cloud data center, are written into edge FeFET CiM. The written weights are changed by FeFET device errors in the field. By partially retraining the written NN model, the proposed method combines the error-affected layers of NN model with the retrained layers. The inference accuracy is thus recovered. After retraining, the retrained layers are re-written to CiM and affected by device errors again. In the evaluation, at first, the recovery capability of NN model by partial retraining is analyzed. Then the inference accuracy after re-writing is evaluated. Recovery capability is evaluated with non-volatile memory (NVM) typical errors: normal distribution, uniform shift, and bit-inversion. For all types of errors, more than 50% of the degraded percentage of inference accuracy is recovered by retraining only the final fully-connected (FC) layer of Resnet-32. To simulate FeFET Local-Multiply and Global-accumulate (LM-GA) CiM, recovery capability is also evaluated with FeFET errors modeled based on FeFET measurements. Retraining only FC layer achieves recovery rate of up to 53%, 66%, and 72% for FeFET write variation, read-disturb, and data-retention, respectively. In addition, just adding two more retraining layers improves recovery rate by 20-30%. In order to tune the number of retraining layers, inference accuracy after re-writing is evaluated by simulating the errors that occur after retraining. When NVM typical errors are injected, it is optimal to retrain FC layer and 3-6 convolution layers of Resnet-32. The optimal number of layers can be increased or decreased depending on the balance between the size of errors before retraining and errors after retraining.

  • On the Limitations of Computational Fuzzy Extractors

    Kenji YASUNAGA  Kosuke YUZAWA  

     
    LETTER

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:3
      Page(s):
    350-354

    We present a negative result of fuzzy extractors with computational security. Specifically, we show that, under a computational condition, a computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor with slightly weaker parameters. Our result implies that to circumvent the limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors that are not invertible by non-lossy functions.

  • Multi Deletion/Substitution/Erasure Error-Correcting Codes for Information in Array Design

    Manabu HAGIWARA  

     
    PAPER-Coding Theory and Techniques

      Pubricized:
    2022/09/21
      Vol:
    E106-A No:3
      Page(s):
    368-374

    This paper considers error-correction for information in array design, i.e., two-dimensional design such as QR-codes. The error model is multi deletion/substitution/erasure errors. Code construction for the errors and an application of the code are provided. The decoding technique uses an error-locator for deletion codes.

  • Vulnerability Estimation of DNN Model Parameters with Few Fault Injections

    Yangchao ZHANG  Hiroaki ITSUJI  Takumi UEZONO  Tadanobu TOBA  Masanori HASHIMOTO  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    523-531

    The reliability of deep neural networks (DNN) against hardware errors is essential as DNNs are increasingly employed in safety-critical applications such as automatic driving. Transient errors in memory, such as radiation-induced soft error, may propagate through the inference computation, resulting in unexpected output, which can adversely trigger catastrophic system failures. As a first step to tackle this problem, this paper proposes constructing a vulnerability model (VM) with a small number of fault injections to identify vulnerable model parameters in DNN. We reduce the number of bit locations for fault injection significantly and develop a flow to incrementally collect the training data, i.e., the fault injection results, for VM accuracy improvement. We enumerate key features (KF) that characterize the vulnerability of the parameters and use KF and the collected training data to construct VM. Experimental results show that VM can estimate vulnerabilities of all DNN model parameters only with 1/3490 computations compared with traditional fault injection-based vulnerability estimation.

  • Intelligent Reconfigurable Surface-Aided Space-Time Line Code for 6G IoT Systems: A Low-Complexity Approach

    Donghyun KIM  Bang Chul JUNG  

     
    LETTER-Information Theory

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:2
      Page(s):
    154-158

    Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.

  • Making General Dilution Graphs Robust to Unbalanced-Split Errors on Digital Microfluidic Biochips

    Ikuru YOSHIDA  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    97-105

    Digital Microfluidic Biochips (DMFBs) can execute biochemical experiments very efficiently, and thus they are drawing attention recently. In biochemical experiments on a DMFB, “sample preparation” is an important task to generate a sample droplet with the desired concentration value. We merge/split droplets in a DMFB to perform sample preparation. When we split a droplet into two droplets, the split cannot be done evenly in some cases. By some unbalanced splits, the generated concentration value may have unacceptable errors. This paper shows that we can decrease the impact of errors caused by unbalanced splits if we duplicate some mixing nodes in a given dilution graph for most cases. We then propose an efficient method to transform a dilution graph in order to decrease the impact of errors caused by unbalanced splits. We also present a preliminary experimental result to show the potential of our method.

  • Antenna Array Self-Calibration Algorithm with Location Errors for MUSIC

    Jian BAI  Lin LIU  Xiaoyang ZHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1421-1424

    The characteristics of antenna array, like sensor location, gain and phase response are rarely perfectly known in realistic situations. Location errors usually have a serious impact on the DOA (direction of arrival) estimation. In this paper, a novel array location calibration method of MUSIC (multiple signal classification) algorithm based on the virtual interpolated array is proposed. First, the paper introduces the antenna array positioning scheme. Then, the self-calibration algorithm of FIR-Winner filter based on virtual interpolation array is derived, and its application restriction are also analyzed. Finally, by simulating the different location errors of antenna array, the effectiveness of the proposed method is validated.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Locally Differentially Private Minimum Finding

    Kazuto FUKUCHI  Chia-Mu YU  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/11
      Vol:
    E105-D No:8
      Page(s):
    1418-1430

    We investigate a problem of finding the minimum, in which each user has a real value, and we want to estimate the minimum of these values under the local differential privacy constraint. We reveal that this problem is fundamentally difficult, and we cannot construct a consistent mechanism in the worst case. Instead of considering the worst case, we aim to construct a private mechanism whose error rate is adaptive to the easiness of estimation of the minimum. As a measure of easiness, we introduce a parameter α that characterizes the fatness of the minimum-side tail of the user data distribution. As a result, we reveal that the mechanism can achieve O((ln6N/ε2N)1/2α) error without knowledge of α and the error rate is near-optimal in the sense that any mechanism incurs Ω((1/ε2N)1/2α) error. Furthermore, we demonstrate that our mechanism outperforms a naive mechanism by empirical evaluations on synthetic datasets. Also, we conducted experiments on the MovieLens dataset and a purchase history dataset and demonstrate that our algorithm achieves Õ((1/N)1/2α) error adaptively to α.

  • LDPC Codes for Communication Systems: Coding Theoretic Perspective Open Access

    Takayuki NOZAKI  Motohiko ISAKA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    894-905

    Low-density parity-check (LDPC) codes are widely used in communication systems for their high error-correcting performance. This survey introduces the elements of LDPC codes: decoding algorithms, code construction, encoding algorithms, and several classes of LDPC codes.

1-20hit(1060hit)