The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

881-900hit(3161hit)

  • A New Preprocessing Method for Efficient Construction of Decision Diagrams

    S. R. MALATHI  P. SAKTHIVEL  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E97-A No:2
      Page(s):
    624-631

    Many discrete functions are often compactly represented by Decision Diagrams (DD). The main problem in the construction of decision diagrams is the space and time requirements. While constructing a decision diagram the memory requirement may grow exponentially with the function. Also, large numbers of temporary nodes are created while constructing the decision diagram for a function. Here the problem of reducing the number of temporary nodes is addressed with respect to the PLA specification format of a function, where the function is represented using a set of cubes. Usually a DD is constructed by recursively processing the input cubes in the PLA specification. The DD, representing a sub function, is specified by a single cube. This DD is merged with a master DD, which represents the entire previously processed cubes. Thus the master DD is constructed recursively, until all the cubes in the input cube set are processed. In this paper, an efficient method is proposed, which reorders and also partitions the cube set into unequal number of cubes per subset, in such a way that, the number of temporary nodes created and the number of logical operations done, during the merging of cubes with the master DD are reduced. This results in the reduction of space and time required for the construction of DDs to a remarkable extent.

  • A Note on Pcodes of Partial Words

    Tetsuo MORIYA  Itaru KATAOKA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:1
      Page(s):
    139-141

    In this paper, we study partial words in relation with pcodes, compatibility, and containment. First, we introduce C⊂(L), the set of all partial words contained by elements of L, and C⊃(L), the set of all partial words containing elements of L, for a set L of partial words. We discuss the relation between C(L), the set of all partial words compatible with elements of the set L, C⊂(L), and C⊃(L). Next, we consider the condition for C(L), C⊂(L), and C⊃(L) to be a pcode when L is a pcode. Furthermore, we introduce some classes of pcodes. An infix pcode and a comma-free pcode are defined, and the inclusion relation among these classes is established.

  • Analysis of Low Grazing Scattering by Dielectric Gratings in Conical Mounting Using Scattering Factors

    Hideaki WAKABAYASHI  Masamitsu ASAI  Keiji MATSUMOTO  Jiro YAMAKITA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:1
      Page(s):
    50-57

    In the shadow theory, a new description and a physical mean at a low grazing limit of incidence on gratings in the two dimensional scattering problem have been discussed. In this paper, by applying the shadow theory to the three dimensional problem of multilayered dielectric periodic gratings, we formulate the oblique primary excitation and introduce the scattering factors through our analytical method, by use of the matrix eigenvalues. In terms of the scattering factors, the diffraction efficiencies are defined for propagating and evanescent waves with linearly and circularly polarized incident waves. Numerical examples show that when an incident angle becomes low grazing, only specular reflection occurs with the reflection coefficient -1, regardless of the incident polarization. It is newly found that in a circularly polarized incidence case, the same circularly polarized wave as the incident wave is specularly reflected at a low grazing limit.

  • Performance Comparisons of Subjective Quality Assessment Methods for Video

    Toshiko TOMINAGA  Masataka MASUDA  Jun OKAMOTO  Akira TAKAHASHI  Takanori HAYASHI  

     
    PAPER-Network

      Vol:
    E97-B No:1
      Page(s):
    66-75

    Many subjective assessment methods for video quality are provided by ITU-T and ITU-R recommendations, but the differences among these methods have not been sufficiently studied. We compare five subjective assessment methods using four quantitative performance indices for both HD and QVGA resolution video. We compare the Double-Stimulus Continuous Quality-Scale (DSCQS), Double-Stimulus Impairment Scale (DSIS), Absolute Category Rating method (ACR), and ACR with Hidden Reference (ACR-HR) as common subjective assessment methods for HD and QVGA resolution videos. Furthermore, we added ACR with an 11-grade scale (ACR11) for the HD test and Subjective Assessment of Multimedia Video Quality (SAMVIQ) for the QVGA test for quality scale variations. The performance indices are correlation coefficients, rank correlation coefficients, statistical reliability, and assessment time. For statistical reliability, we propose a performance index for comparing different quality scale tests. The results of the performance comparison showed that the correlation coefficients and rank correlation coefficients of the mean opinion scores between pairs of methods were high for both HD and QVGA tests. As for statistical reliability provided by the proposed index, DSIS of HD and ACR of QVGA outperformed the other methods. Moreover, ACR, ACR-HR, and ACR11 were the most efficient subjective quality assessment methods from the viewpoint of assessment time.

  • Parametric Wiener Filter with Linear Constraints for Unknown Target Signals

    Akira TANAKA  Hideyuki IMAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    322-330

    In signal restoration problems, we expect to improve the restoration performance with a priori information about unknown target signals. In this paper, the parametric Wiener filter with linear constraints for unknown target signals is discussed. Since the parametric Wiener filter is usually defined as the minimizer of the criterion not for the unknown target signal but for the filter, it is difficult to impose constraints for the unknown target signal in the criterion. To overcome this difficulty, we introduce a criterion for the parametric Wiener filter defined for the unknown target signal whose minimizer is equivalent to the solution obtained by the original formulation. On the basis of the newly obtained criterion, we derive a closed-form solution for the parametric Wiener filter with linear constraints.

  • A CAM-Based Information Detection Hardware System for Fast Image Matching on FPGA

    Duc-Hung LE  Tran-Bao-Thuong CAO  Katsumi INOUE  Cong-Kha PHAM  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:1
      Page(s):
    65-76

    In this paper, the authors present a CAM-based Information Detection Hardware System for fast, exact and approximate image matching on 2-D data, using FPGA. The proposed system can be potentially applied to fast image matching with various required search patterns, without using search principles. In designing the system, we take advantage of Content Addressable Memory (CAM) which has parallel multi-match mode capability and has been designed, using dual-port RAM blocks. The system has a simple structure, and does not employ any Central Processor Unit (CPU) or complicated computations.

  • Fast DFRFT Robust Watermarking Algorithm Based on the Arnold Scrambling and OFDM Coding

    Wenkao YANG  Jing GUO  Enquan LI  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E97-B No:1
      Page(s):
    218-225

    Combining the strong anti-interference advantages of OFDM technology and the time-frequency analysis features of fractional Fourier transform (FFT), we apply OFDM as the coding modulation technology for digital watermarking. Based on the Arnold scrambling and OFDM coding, an innovative DFRFT digital watermarking algorithm is proposed. First, the watermark information is subjected to the Arnold scrambling encryption and OFDM coding transform. Then it is embedded into the FFT domain amplitude. The three parameters of scrambling iterations number, t, FFT order, p, and the watermark information embedded position, L, are used as keys, so that the algorithm has high safety. A simulation shows that the algorithm is highly robust against noise, filtering, compression, and other general attacks. The algorithm not only has strong security, but also makes a good balance between invisibility and robustness. But the possibility of using OFDM technique in robust image watermarking has drawn a very little attention.

  • Virtual Continuous CWmin Control Scheme of WLAN

    Yuki SANGENYA  Fumihiro INOUE  Masahiro MORIKURA  Koji YAMAMOTO  Fusao NUNO  Takatoshi SUGIYAMA  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    40-48

    In this paper, a priority control problem between uplink and downlink flows in IEEE 802.11 wireless LANs is considered. The minimum contention window size (CWmin) has a nonnegative integer value. CWmin control scheme is one of the solutions for priority control to achieve the fairness between links. However, it has the problem that CWmin control scheme cannot achieve precise priority control when the CWmin values become small. As the solution of this problem, this paper proposes a new CWmin control method called a virtual continuous CWmin control (VCCC) scheme. The key concept of this method is that it involves the use of small and large CWmin values probabilistically. The proposed scheme realizes the expected value of CWmin as a nonnegative real number and solves the precise priority control problem. Moreover, we proposed a theoretical analysis model for the proposed VCCC scheme. Computer simulation results show that the proposed scheme improves the throughput performance and achieves fairness between the uplink and the downlink flows in an infrastructure mode of the IEEE 802.11 based wireless LAN. Throughput of the proposed scheme is 31% higher than that of a conventional scheme when the number of wireless stations is 18. The difference between the theoretical analysis results and computer simulation results of the throughput is within 1% when the number of STAs is less than 10.

  • Adaptive Reversible Data Hiding via Integer-to-Integer Subband Transform and Adaptive Generalized Difference Expansion Method

    Taichi YOSHIDA  Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E97-A No:1
      Page(s):
    384-392

    We propose an adaptive reversible data hiding method with superior visual quality and capacity in which an adaptive generalized difference expansion (AGDE) method is applied to an integer-to-integer subband transform (I2I-ST). I2I-ST performs the reversible subband transform and the AGDE method is a state-of-the-art method of reversible data hiding. The results of experiments we performed objectively and perceptually show that the proposed method has better visual quality than conventional methods at the same embedding rate due to low variance in the frequency domain.

  • Packetization and Unequal Erasure Protection for Transmission of SPIHT-Encoded Images

    Kuen-Tsair LAY  Lee-Jyi WANG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E97-B No:1
      Page(s):
    226-237

    Coupled with the discrete wavelet transform, SPIHT (set partitioning in hierarchical trees) is a highly efficient image compression technique that allows for progressive transmission. One problem, however, is that its decoding can be extremely sensitive to bit errors in the code sequence. In this paper, we address the issue of transmitting SPIHT-encoded images via noisy channels, wherein errors are inevitable. The communication scenario assumed in this paper is that the transmitter cannot get any acknowledgement from the receiver. In our scheme, the original SPIHT code sequence is first segmented into packets. Each packet is classified as either a CP (critical packet) or an RP (refinement packet). For error control, cyclic redundancy check (CRC) is incorporated into each packet. By checking the CRC check sum, the receiver is able to tell whether a packet is correctly received or not. In this way, the noisy channel can be effectively modeled as an erasure channel. For unequal error protection (UEP), each of those packets are repeatedly transmitted for a few times, as determined by a process called diversity allocation (DA). Two DA algorithms are proposed. The first algorithm produces a nearly optimal decoded image (as measured in the expected signal-to-noise ratio). However, its computation cost is extremely high. The second algorithm works in a progressive fashion and is naturally compatible with progressive transmission. Its computation complexity is extremely low. Nonetheless, its decoded image is nearly as good. Experimental results show that the proposed scheme significantly improves the decoded images. They also show that making distinction between CP and RP results in wiser diversity allocation to packets and thus produces higher quality in the decoded images.

  • Optimal Transform Order of Fractional Fourier Transform for Decomposition of Overlapping Ultrasonic Signals

    Zhenkun LU  Cui YANG  Gang WEI  

     
    LETTER-Ultrasonics

      Vol:
    E97-A No:1
      Page(s):
    393-396

    The separation time-overlapping ultrasound signals is necessary to obtain accurate estimate of transit time and material properties. In this letter, a method to determine the optimal transform order of fractional Fourier transform (FRFT) for decomposition of overlapping ultrasonic signals is proposed. The optimal transform order is obtained by minimizing the mean square error (MSE) between the output and the reference signal. Furthermore, windowing in FRFT domain is discussed. Numerical simulation results show the performances of the proposed method in separating signals overlapping in time.

  • A Novel Adaptive Interference Admission Control Method for Layered Partially Non-orthogonal Block Diagonalization for Base Station Cooperative MIMO

    Yusuke OSHIMA  Anass BENJEBBOUR  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:1
      Page(s):
    155-163

    This paper proposes a novel method for adaptively controlling the admission of interference to users in our previously proposed layered partially non-orthogonal block diagonalization (BD) precoding method for downlink multiuser multiple-input multiple-output (MIMO) transmission that employs cooperation among multiple base stations (BSs). The proposed method is applicable when some of the instantaneous channel state information (CSI) feedback between the user equipment and the respective BSs is missing if the path loss between the user equipment and BS is higher than a predetermined threshold. The proposed method suppresses the loss in the transmitter diversity (beam forming) gain caused by the perfect nulling of inter-user interference in BD. By allowing the inter-user interference from a link that has a high average path loss, the overall throughput performance of simple BD is enhanced. We show that the combination of layered transmission that restricts the set of BSs used for the signal transmission and adaptive control of interference admission significantly increases the throughput of BS cooperative multiuser MIMO with partial CSI feedback.

  • Improved Spectral Efficiency at Reduced Outage Probability for Cooperative Wireless Networks by Using CSI Directed Estimate and Forward Strategy

    Yihenew Wondie MARYE  Chen LIU  Feng LU  Hua-An ZHAO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    7-17

    Cooperative wireless communication is a communication mechanism to attain diversity through virtual antenna array that is formed by sharing resources among different users. Different strategies of resource utilization such as amplify-and-forward (AF) and decode-and-forward (DF) already exist in cooperative networks. Although the implementation of these strategies is simple, their utilization of the channel state information (CSI) is generally poor. As a result, the outage and bit error rate (BER) performances need much more improvement in order to satisfy the upcoming high data rate demands. For that to happen the spectral efficiency supported by a wireless system at a very low outage probability should be increased. In this paper a new approach, based on the previously existing ones, called CSI directed estimate and forward (CDEF) with a reduced estimation domain is proposed. A closed form solution for the optimal signal estimation at the relay using minimum mean square error (MMSE) as well as a possible set reduction of the estimation domain is given. It will be shown that this new strategy attains better symbol error rate (SER) and outage performance than AF or DF when the source relay link is comparatively better than the relay destination link. Simulation results also show that it has got better spectral efficiency at low outage probability for a given signal to noise ratio (SNR) as well as for a fixed outage probability in any operating SNR range.

  • Fuzzy Metric Based Weight Assignment for Deinterlacing

    Gwanggil JEON  Young-Sup LEE  SeokHoon KANG  

     
    LETTER-Image

      Vol:
    E97-A No:1
      Page(s):
    440-443

    An effective interlaced-to-progressive scanning format conversion method is presented for the interpolation of interlaced images. On the basis of the weight assignment algorithm, the proposed method is composed of three stages: (1) straightforward interpolation with pre-determined six-tap filter, (2) fuzzy metric-based weight assignment, (3) updating the interpolation results. We first deinterlace the missing line with six-tap filter in the working window. Then we compute the local weight among the adjacent pixels with a fuzzy metric. Finally we deinterlace the missing pixels using the proposed interpolator. Comprehensive simulations conducted on different images and video sequences have proved the effectiveness of the proposed method, with significant improvement over conventional methods.

  • Personal Information Extraction from Korean Obituaries

    Kyoung-Soo HAN  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:12
      Page(s):
    2873-2876

    Pieces of personal information, such as personal names and relationships, are crucial in text mining applications. Obituaries are good sources for this kind of information. This study proposes an effective method for extracting various facts about people from obituary Web pages. Experiments show that the proposed method achieves high performance in terms of recall and precision.

  • A 5.83pJ/bit/iteration High-Parallel Performance-Aware LDPC Decoder IP Core Design for WiMAX in 65nm CMOS

    Xiongxin ZHAO  Zhixiang CHEN  Xiao PENG  Dajiang ZHOU  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2623-2632

    In this paper, we propose a synthesizable LDPC decoder IP core for the WiMAX system with high parallelism and enhanced error-correcting performance. By taking the advantages of both layered scheduling and fully-parallel architecture, the decoder can fully support multi-mode decoding specified in WiMAX with the parallelism much higher than commonly used partial-parallel layered LDPC decoder architecture. 6-bit quantized messages are split into bit-serial style and 2bit-width serial processing lines work concurrently so that only 3 cycles are required to decode one layer. As a result, 12∼24 cycles are enough to process one iteration for all the code-rates specified in WiMAX. Compared to our previous bit-serial decoder, it doubles the parallelism and solves the message saturation problem of the bit-serial arithmetic, with minor gate count increase. Power synthesis result shows that the proposed decoder achieves 5.83pJ/bit/iteration energy efficiency which is 46.8% improvement compared to state-of-the-art work. Furthermore, an advanced dynamic quantization (ADQ) technique is proposed to enhance the error-correcting performance in layered decoder architecture. With about 2% area overhead, 6-bit ADQ can achieve the error-correcting performance close to 7-bit fixed quantization with improved error floor performance.

  • A Fast Power Current Simulation of Cryptographic VLSI Circuits for Side Channel Attack Evaluation

    Daisuke FUJIMOTO  Toshihiro KATASHITA  Akihiko SASAKI  Yohei HORI  Akashi SATOH  Makoto NAGATA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2533-2541

    Capacitor charging modeling accelerates the time-domain simulation of power current of cryptographic VLSI circuits in a CMOS technology. The model finely represents the amount of charges consumed during the operation of Advanced Encryption Standard (AES) cores in a variety of logical implementations, reflecting their internal logical activities. This approach significantly reduces the complexity of power current simulation, and accomplishes acceleration by a factor of more than 200 over the traditional transistor-level circuit simulation. The correlated power analysis (CPA) attack against AES cores is successfully simulated with a conventional circuit simulator, with the models individually derived for 10,000 different cipher texts. The CPA is also experimentally performed against AES cores fabricated in a 65nm as well as 130nm CMOS technologies, using SASEBO measurement standards. The fast power current simulation is demonstrated to be accurate enough to evaluate the vulnerability of AES cores in various logical implementations as well as in different technologies, and exhibits general agreements with the silicon measurements.

  • Performance Evaluation of Probing Front-End Circuits for On-Chip Noise Monitoring

    Yuuki ARAGA  Nao UEDA  Yasumasa TAKAGI  Makoto NAGATA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2516-2523

    A probing front end circuit (PFE) senses and digitizes voltage noises at in-circuit locations on such as power supply wiring and substrate taps in a chip, with the simplest circuit construction only with a source follower or a unity gain buffer, followed by a latch comparator. The PFE with 2.5V I/O transistors in a 65nm CMOS technology node demonstrates 9.0 ENOB and 60.7dB SFDR in equivalent sampling at 1.0Gs/s, for a sinusoidal waveform of 10MHz with 200mV peak-to-peak amplitude. Behavioral modeling of an entire waveform acquisition system using PFEs includes the statistical variations of reference voltage and sampling timing. The simulation quantitatively explains the measured dynamic properties of on-chip noise monitoring, such as the AC response in SNDR and digitizing throughputs, with the clear dependency on the frequency and amplitude of input waveforms.

  • Dynamic Spectrum Control Aided Spectrum Sharing with Nonuniform Sampling-Based Channel Sounding

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3172-3180

    This paper studies channel sounding for selfish dynamic spectrum control (S-DSC) in which each link dynamically maps its spectral components onto a necessary amount of discrete frequencies having the highest channel gain of the common system band. In S-DSC, it is compulsory to conduct channel sounding for the entire system band by using a reference signal whose spectral components are sparsely allocated by S-DSC. Using nonuniform sampling theory, this paper exploits the finite impulse response characteristic of frequency selective fading channels to carry out the channel sounding. However, when the number of spectral components is relatively small compared to the number of discrete frequencies of the system band, reliability of the channel sounding deteriorates severely due to the ill-conditioned problem and degradation in channel capacity of the next frame occurs as a result. Aiming at balancing frequency selection diversity effect and reliability of channel sounding, this paper proposes an S-DSC which allocates an appropriate number of spectral components onto discrete frequencies with low predicted channel gain besides mapping the rest onto those with high predicted channel gain. A numerical analysis confirms that the proposed S-DSC gives significant enhancement in channel capacity performance.

  • Semi-Analytical Method for Performance Analysis of Code-Aided Soft-Information Based Iterative Carrier Phase Recovery

    Nan WU  Hua WANG  Hongjie ZHAO  Jingming KUANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E96-B No:12
      Page(s):
    3062-3069

    This paper studies the performance of code-aided (CA) soft-information based carrier phase recovery, which iteratively exploits the extrinsic information from channel decoder to improve the accuracy of phase synchronization. To tackle the problem of strong coupling between phase recovery and decoding, a semi-analytical model is proposed to express the distribution of extrinsic information as a function of phase offset. Piecewise approximation of the hyperbolic tangent function is employed to linearize the expression of soft symbol decision. Building on this model, open-loop characteristic and closed-loop performance of CA iterative soft decision-directed (ISDD) carrier phase synchronizer are derived in closed-form. Monte Carlo simulation results corroborate that the proposed expressions are able to characterize the performance of CA ISDD carrier phase recovery for systems with different channel codes.

881-900hit(3161hit)