The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] k(12654hit)

281-300hit(12654hit)

  • Location First Non-Maximum Suppression for Uncovered Muck Truck Detection

    Yuxiang ZHANG  Dehua LIU  Chuanpeng SU  Juncheng LIU  

     
    PAPER-Image

      Pubricized:
    2022/12/13
      Vol:
    E106-A No:6
      Page(s):
    924-931

    Uncovered muck truck detection aims to detect the muck truck and distinguish whether it is covered or not by dust-proof net to trace the source of pollution. Unlike traditional detection problem, recalling all uncovered trucks is more important than accurate locating for pollution traceability. When two objects are very close in an image, the occluded object may not be recalled because the non-maximum suppression (NMS) algorithm can remove the overlapped proposal. To address this issue, we propose a Location First NMS method to match the ground truth boxes and predicted boxes by position rather than class identifier (ID) in the training stage. Firstly, a box matching method is introduced to re-assign the predicted box ID using the closest ground truth one, which can avoid object missing when the IoU of two proposals is greater than the threshold. Secondly, we design a loss function to adapt the proposed algorithm. Thirdly, a uncovered muck truck detection system is designed using the method in a real scene. Experiment results show the effectiveness of the proposed method.

  • Policy-Based Grooming, Route, Spectrum, and Operational Mode Planning in Dynamic Multilayer Networks

    Takafumi TANAKA  Hiroshi HASEGAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/11/30
      Vol:
    E106-B No:6
      Page(s):
    489-499

    In this paper, we propose a heuristic planning method to efficiently accommodate dynamic multilayer path (MLP) demand in multilayer networks consisting of a Time Division Multiplexing (TDM) layer and a Wavelength Division Multiplexing (WDM) layer; the goal is to achieve the flexible accommodation of increasing capacity and diversifying path demands. In addition to the grooming of links at the TDM layer and the route and frequency slots for the elastic optical path to be established, MLP requires the selection of an appropriate operational mode, consisting of a combination of modulation formats and symbol rates supported by digital coherent transceivers. Our proposed MLP planning method defines a planning policy for each of these parameters and embeds the values calculated by combining these policies in an auxiliary graph, which allows the planning parameters to be calculated for MLP demand requirements in a single step. Simulations reveal that the choice of operational mode significantly reduces the blocking probability and demonstrate that the edge weights in the auxiliary graph allow MLP planning with characteristics tailored to MLP demand and network requirements. Furthermore, we quantitatively evaluate the impact of each planning policy on the MLP planning results.

  • High Performance Network Virtualization Architecture on FPGA SmartNIC

    Ke WANG  Yiwei CHANG  Zhichuan GUO  

     
    PAPER-Network System

      Pubricized:
    2022/11/29
      Vol:
    E106-B No:6
      Page(s):
    500-508

    Network Functional Virtualization (NFV) is a high-performance network interconnection technology that allows access to traditional network transport devices through virtual network links. It is widely used in cloud computing and other high-concurrent access environments. However, there is a long delay in the introduction of software NFV solutions. Other hardware I/O virtualization solutions don't scale very well. Therefore, this paper proposes a virtualization implementation method on 100Gbps high-speed Field Programmable Gate Array (FPGA) network accelerator card, which uses FPGA accelerator to improve the performance of virtual network devices. This method uses the single root I/O virtualization (SR-IOV) technology to allow 256 virtual links to be created for a single Peripheral Component Interconnect express (PCIe) device. And it supports data transfer with virtual machine (VM) in the way of Peripheral Component Interconnect (PCI) passthrough. In addition, the design also adopts the shared extensible queue management mechanism, which supports the flexible allocation of more than 10,000 queues on virtual machines, and ensures the good isolation performance in the data path and control path. The design provides high-bandwidth transmission performance of more than 90Gbps for the entire network system, meeting the performance requirements of hyperscale cloud computing clusters.

  • Unified 6G Waveform Design Based on DFT-s-OFDM Enhancements

    Juan LIU  Xiaolin HOU  Wenjia LIU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/12/05
      Vol:
    E106-B No:6
      Page(s):
    528-537

    To achieve the extreme high data rate and extreme coverage extension requirements of 6G wireless communication, new spectrum in sub-THz (100-300GHz) and non-terrestrial network (NTN) are two of the macro trends of 6G candidate technologies, respectively. However, non-linearity of power amplifiers (PA) is a critical challenge for both sub-THz and NTN. Therefore, high power efficiency (PE) or low peak to average power ratio (PAPR) waveform design becomes one of the most significant 6G research topics. Meanwhile, high spectral efficiency (SE) and low out-of-band emission (OOBE) are still important key performance indicators (KPIs) for 6G waveform design. Single-carrier waveform discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-s-OFDM) has achieved many research interests due to its high PE, and it has been supported in 5G New Radio (NR) when uplink coverage is limited. So DFT-s-OFDM can be regarded as a candidate waveform for 6G. Many enhancement schemes based on DFT-s-OFDM have been proposed, including null cyclic prefix (NCP)/unique word (UW), frequency-domain spectral shaping (FDSS), and time-domain compression and expansion (TD-CE), etc. However, there is no unified framework to be compatible with all the enhancement schemes. This paper firstly provides a general description of the 6G candidate waveforms based on DFT-s-OFDM enhancement. Secondly, the more flexible TD-CE supporting methods for unified non-orthogonal waveform (uNOW) are proposed and discussed. Thirdly, a unified waveform framework based on DFT-s-OFDM structure is proposed. By designing the pre-processing and post-processing modules before and after DFT in the unified waveform framework, the three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three KPIs of DFT-s-OFDM simultaneously with high flexibility. Then the implementation complexity of the 6G candidate waveforms are analyzed and compared. Performance of different DFT-s-OFDM enhancement schemes is investigated by link level simulation, which reveals that uNOW can achieve the best PAPR performance among all the 6G candidate waveforms. When considering PA back-off, uNOW can achieve 124% throughput gain compared to traditional DFT-s-OFDM.

  • On/Off Ratio of a Pentacene Field-Effect Transistor with a Discontinuous MoO3 Layer

    Takumi KOBAYASHI  Masahiro MINAGAWA  Akira BABA  Keizo KATO  Kazunari SHINBO  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-C No:6
      Page(s):
    214-219

    Improvement of the on/off ratio in organic field-effect transistors through the use of pentacene and molybdenum trioxide (MoO3) layers was attempted via the preparation of a discontinuous MoO3 layer using a mesh mask. We prepared three types of devices. Device A had a conventional top-contact structure with an n-type Si wafer and a 200-nm-thick SiO2 film onto which we deposited a 70-nm-thick pentacene film and a 30-nm-thick layer of Au top electrodes. Devices B and C had a similar structure to device A but received a continuous and a discontinuous MoO3 layer, respectively. The off current in Device B was remarkably high; in contrast, the off current in Device C was reduced and dependent on the separation of the MoO3 layer. It was deduced that the high resistance of the area without MoO3 contributed to the reduced off current.

  • Effects of Potassium Doping on the Active Layer of Inverse-Structured Perovskite Solar Cells Open Access

    Tatsuya KATO  Yusuke ICHINO  Tatsuo MORI  Yoshiyuki SEIKE  

     
    PAPER

      Pubricized:
    2023/01/18
      Vol:
    E106-C No:6
      Page(s):
    220-227

    In this report, solar cell characteristics were evaluated by doping the active layer CH3NH3PbI3 (MAPbI3) with 3.0 vol% and 6.0 vol% of potassium ion (KI) in an inverse-structured perovskite solar cells (PSCs). The Tauc plots of the absorbance characteristics and the ionization potential characteristics show that the top end of the valence band shifted by 0.21eV in the shallow direction from -5.34eV to -5.13eV, and the energy band gap decreased from 1.530eV to 1.525eV. Also, the XRD measurements show that the lattice constant decreased from 8.96Å to 8.93Å when KI was doped. The decrease in the lattice constant indicates that a part of the A site is replaced from methylammonium ion (MAI) to KI. In the J-V characteristics of the solar cell, the mean value of Jsc improved from 7.0mA/cm2 without KI to 8.8mA/cm2 with 3.0 vol% of KI doped and to 10.2mA/cm2 with 6.0 vol% of KI doped. As a result, the mean value of power-conversion efficiency (PCE) without KI was 3.5%, but the mean value of PCE improved to 5.2% with 3.0 vol% of KI doped and to 4.5% with 6.0 vol% of KI doped. Thus, it has shown that it is effective to dope KI to MAIPBI3, which serves as the active layer, even in the inverse-structured PSCs.

  • Lead Bromide-Based Layered Perovskite Quantum-Well Films Having Aromatic Chromophores in Organic Layer

    Masanao ERA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/16
      Vol:
    E106-C No:6
      Page(s):
    244-247

    Lead bromide-based perovskite organic-inorganic quantum-well films incorporated polycyclic aromatic chromophores into the organic layer (in other words, hybrid quantum-wells combined lead bromide semiconductor and organic semiconductors) were prepared by use of the spin-coating technique from the DMF solution in which PbBr2 and alkyl ammonium bromides which were linked polycyclic aromatics, pyrene, phenanthrene, and anthracene. When the pyrene-linked methyl ammonium bromide, which has a relatively small molecular cross-section with regard to the inorganic semiconductor plane, was employed, a lead bromide-based perovskite structure was successfully formed in the spin-coated films. When the phenanthrene-linked and anthracene-linked ammonium bromides, whose chromophore have large molecular cross-sections, were employed, lead bromide-based perovskite structures were not formed. However, the introduction of longer alkyl chains into the aromatics-linked ammonium bromides made it possible to form the perovskite structure.

  • Stack-Type Enzyme Biofuel Cell Using a Cellulose Nanofiber Sheet to Absorb Lactic Acid from Human Sweat as Fuel

    Satomitsu IMAI  Atsuya YAMAKAWA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    258-261

    An enzymatic biofuel cell (BFC) that uses lactic acid in human sweat as fuel to generate electricity is an attractive power source for wearable devices. A BFC capable of generating electricity with human sweat has been developed. It comprised a flexible tattoo seal type battery with silver oxide vapor deposited on a flexible material and conductive carbon nanotubes printed on it. The anode and cathode in this battery were arranged in a plane (planar type). This work proposes a thin laminated enzymatic BFC by inserting a cellulose nanofiber (CNF) sheet between two electrodes to absorb human sweat (stack-type). Optimization of the anode and changing the arrangement of electrodes from planar to stack type improved the output and battery life. The stack type is 43.20μW / cm2 at 180mV, which is 1.25 times the maximum power density of the planar type.

  • Flux Modulation Enhancement of dc-SQUID Based on Intrinsic Josephson Junctions Made of Bi2Sr2CaCuO8+δ Thin Films Open Access

    Kensuke NAKAJIMA  Hironobu YAMADA  Mihoko TAKEDA  

     
    INVITED PAPER

      Pubricized:
    2022/11/29
      Vol:
    E106-C No:6
      Page(s):
    289-292

    Direct-current superconducting quantum interference device (dc-SQUID) based on intrinsic Josephson junction (IJJ) has been fabricated using Bi2Sr2CaCu2O8+δ (Bi-2212) films grown on MgO substrates with surface steps. The superconducting loop parallel to the film surface across the step edge contains two IJJ stacks along the edge. The number of crystallographically stacked IJJ for each SQUIDs were 40, 18 and 3. Those IJJ SQUIDs except for one with 40 stacked IJJs revealed clear periodic modulation of the critical current for the flux quanta through the loops. It is anticipated that phase locking of IJJ has an effect on the modulation depth of the IJJ dc-SQUID.

  • Evaluation of Performance and Power Consumption on Supercomputer Fugaku Using SPEC HPC Benchmarks

    Yuetsu KODAMA  Masaaki KONDO  Mitsuhisa SATO  

     
    PAPER

      Pubricized:
    2022/12/12
      Vol:
    E106-C No:6
      Page(s):
    303-311

    The supercomputer, “Fugaku”, which ranked number one in multiple supercomputing lists, including the Top500 in June 2020, has various power control features, such as (1) an eco mode that utilizes only one of two floating-point pipelines while decreasing the power supply to the chip; (2) a boost mode that increases clock frequency; and (3) a core retention feature that turns unused cores to the low-power state. By orchestrating these power-performance features while considering the characteristics of running applications, we can potentially gain even better system-level energy efficiency. In this paper, we report on the performance and power consumption of Fugaku using SPEC HPC benchmarks. Consequently, we confirmed that it is possible to reduce the energy by about 17% while improving the performance by about 2% from the normal mode by combining boost mode and eco mode.

  • Ultra-Low-Latency 8K-Video-Transmission System Utilizing Whitebox Transponder with Disaggregation Configuration

    Yasuhiro MOCHIDA  Daisuke SHIRAI  Koichi TAKASUGI  

     
    PAPER

      Pubricized:
    2022/12/16
      Vol:
    E106-C No:6
      Page(s):
    321-330

    The demand for low-latency transmission of large-capacity video, such as 4K and 8K, is increasing for various applications such as live-broadcast program production, sports viewing, and medical care. In the broadcast industry, low-latency video transmission is required in remote production, an emerging workflow for outside broadcasting. For ideal remote production, long-distance transmission of uncompressed 8K60p video signals, ultra-low latency less than 16.7 ms, and PTP synchronization through network are required; however, no existing video-transmission system fully satisfy these requirements. We focused on optical transport technologies capable of long-distance and large-capacity communication, which were previously used only in telecommunication-carrier networks. To fully utilize optical transport technologies, we propose the first-ever video-transmission system architecture capable of sending and receiving uncompressed 8K video directly through large-capacity optical paths. A transmission timing control in seamless protection switching is also proposed to improve the tolerance to network impairment. As a means of implementation, we focused on whitebox transponder, an emerging type of optical transponder with a disaggregation configuration. The disaggregation configuration enables flexible configuration changes, additional implementations, and cost reduction by separating various functions of optical transponders and controlling them with a standardized interface. We implemented the ultra-low-latency video-transmission system utilizing whitebox transponder Galileo. We developed a hardware plug-in unit for video transmission (VideoPIU), and software to control the VideoPIU. In the video-transmission experiments with 120-km optical fiber, we confirmed that it was capable of transmitting uncompressed 8K60p video stably in 1.3 ms latency and highly accurate PTP synchronization through the optical network, which was required in the ideal remote production. In addition, the application to immersive sports viewing is also presented. Consequently, excellent potential to support the unprecedented applications is demonstrated.

  • Counting and Tracking People to Avoid from Crowded in a Restaurant Using mmWave Radar

    Shenglei LI  Reiko HISHIYAMA  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2023/03/24
      Vol:
    E106-D No:6
      Page(s):
    1142-1154

    One key to implementing the smart city is letting the smart space know where and how many people are. The visual method is a scheme to recognize people with high accuracy, but concerns arise regarding potential privacy leakage and user nonacceptance. Besides, being functional in a limited environment in an emergency should also be considered. We propose a real-time people counting and tracking system based on a millimeter wave radar (mmWave) as an alternative to the optical solutions in a restaurant. The proposed method consists of four main procedures. First, capture the point cloud of obstacles and generate them using a low-cost, commercial off-the-shelf (COTS) mmWave radar. Next, cluster the individual point with similar properties. Then the same people in sequential frames would be associated with the tracking algorithm. Finally, the estimated people would be counted, tracked, and shown in the next frame. The experiment results show that our proposed system provided a median position error of 0.17 m and counting accuracy of 83.5% for ten insiders in various scenarios in an actual restaurant environment. In addition, the real-time estimation and visualization of people's numbers and positions show a potential capability to help prevent crowds during the pandemic of Covid-19 and analyze customer visitation patterns for efficient management and target marketing.

  • FSPose: A Heterogeneous Framework with Fast and Slow Networks for Human Pose Estimation in Videos

    Jianfeng XU  Satoshi KOMORITA  Kei KAWAMURA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/03/20
      Vol:
    E106-D No:6
      Page(s):
    1165-1174

    We propose a framework for the integration of heterogeneous networks in human pose estimation (HPE) with the aim of balancing accuracy and computational complexity. Although many existing methods can improve the accuracy of HPE using multiple frames in videos, they also increase the computational complexity. The key difference here is that the proposed heterogeneous framework has various networks for different types of frames, while existing methods use the same networks for all frames. In particular, we propose to divide the video frames into two types, including key frames and non-key frames, and adopt three networks including slow networks, fast networks, and transfer networks in our heterogeneous framework. For key frames, a slow network is used that has high accuracy but high computational complexity. For non-key frames that follow a key frame, we propose to warp the heatmap of a slow network from a key frame via a transfer network and fuse it with a fast network that has low accuracy but low computational complexity. Furthermore, when extending to the usage of long-term frames where a large number of non-key frames follow a key frame, the temporal correlation decreases. Therefore, when necessary, we use an additional transfer network that warps the heatmap from a neighboring non-key frame. The experimental results on PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the proposed FSPose achieves a better balance between accuracy and computational complexity than the competitor method. Our source code is available at https://github.com/Fenax79/fspose.

  • A Shallow SNN Model for Embedding Neuromorphic Devices in a Camera for Scalable Video Surveillance Systems

    Kazuhisa FUJIMOTO  Masanori TAKADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1175-1182

    Neuromorphic computing with a spiking neural network (SNN) is expected to provide a complement or alternative to deep learning in the future. The challenge is to develop optimal SNN models, algorithms, and engineering technologies for real use cases. As a potential use cases for neuromorphic computing, we have investigated a person monitoring and worker support with a video surveillance system, given its status as a proven deep neural network (DNN) use case. In the future, to increase the number of cameras in such a system, we will need a scalable approach that embeds only a few neuromorphic devices in a camera. Specifically, this will require a shallow SNN model that can be implemented in a few neuromorphic devices while providing a high recognition accuracy comparable to a DNN with the same configuration. A shallow SNN was built by converting ResNet, a proven DNN for image recognition, and a new configuration of the shallow SNN model was developed to improve its accuracy. The proposed shallow SNN model was evaluated with a few neuromorphic devices, and it achieved a recognition accuracy of more than 80% with about 1/130 less energy consumption than that of a GPU with the same configuration of DNN as that of SNN.

  • I/O Performance Improvement of FHE Apriori with Striping File Layout Considering Storage of Intermediate Data

    Atsuki KAMO  Saneyasu YAMAGUCHI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1183-1185

    Fully homomorphic encryption (FHE) enables secret computations. Users can perform computation using data encrypted with FHE without decryption. Uploading private data without encryption to a public cloud has the risk of data leakage, which makes many users hesitant to utilize a public cloud. Uploading data encrypted with FHE avoids this risk, while still providing the computing power of the public cloud. In many cases, data are stored in HDDs because the data size increases significantly when FHE is used. One important data analysis is Apriori data mining. In this application, two files are accessed alternately, and this causes long-distance seeking on its HDD and low performance. In this paper, we propose a new striping layout with reservations for write areas. This method intentionally fragments files and arranges blocks to reduce the distance between blocks in a file and another file. It reserves the area for intermediate files of FHE Apriori. The performance of the proposed method was evaluated based on the I/O processing of a large FHE Apriori, and the results showed that the proposed method could improve performance by up to approximately 28%.

  • Fixed Point Preserving Model Reduction of Boolean Networks Focusing on Complement and Absorption Laws

    Fuma MOTOYAMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    721-728

    A Boolean network (BN) is well known as a discrete model for analysis and control of complex networks such as gene regulatory networks. Since complex networks are large-scale in general, it is important to consider model reduction. In this paper, we consider model reduction that the information on fixed points (singleton attractors) is preserved. In model reduction studied here, the interaction graph obtained from a given BN is utilized. In the existing method, the minimum feedback vertex set (FVS) of the interaction graph is focused on. The dimension of the state is reduced to the number of elements of the minimum FVS. In the proposed method, we focus on complement and absorption laws of Boolean functions in substitution operations of a Boolean function into other one. By simplifying Boolean functions, the dimension of the state may be further reduced. Through a numerical example, we present that by the proposed method, the dimension of the state can be reduced for BNs that the dimension of the state cannot be reduced by the existing method.

  • Detection of False Data Injection Attacks in Distributed State Estimation of Power Networks

    Sho OBATA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    729-735

    In a power network, it is important to detect a cyber attack. In this paper, we propose a method for detecting false data injection (FDI) attacks in distributed state estimation. An FDI attack is well known as one of the typical cyber attacks in a power network. As a method of FDI attack detection, we consider calculating the residual (i.e., the difference between the observed and estimated values). In the proposed detection method, the tentative residual (estimated error) in ADMM (Alternating Direction Method of Multipliers), which is one of the powerful methods in distributed optimization, is applied. First, the effect of an FDI attack is analyzed. Next, based on the analysis result, a detection parameter is introduced based on the residual. A detection method using this parameter is then proposed. Finally, the proposed method is demonstrated through a numerical example on the IEEE 14-bus system.

  • BayesianPUFNet: Training Sample Efficient Modeling Attack for Physically Unclonable Functions

    Hiromitsu AWANO  Makoto IKEDA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/10/31
      Vol:
    E106-A No:5
      Page(s):
    840-850

    This paper proposes a deep neural network named BayesianPUFNet that can achieve high prediction accuracy even with few challenge-response pairs (CRPs) available for training. Generally, modeling attacks are a vulnerability that could compromise the authenticity of physically unclonable functions (PUFs); thus, various machine learning methods including deep neural networks have been proposed to assess the vulnerability of PUFs. However, conventional modeling attacks have not considered the cost of CRP collection and analyzed attacks based on the assumption that sufficient CRPs were available for training; therefore, previous studies may have underestimated the vulnerability of PUFs. Herein, we show that the application of Bayesian deep neural networks that incorporate Bayesian statistics can provide accurate response prediction even in situations where sufficient CRPs are not available for learning. Numerical experiments show that the proposed model uses only half the CRP to achieve the same response prediction as that of the conventional methods. Our code is openly available on https://github.com/bayesian-puf-net/bayesian-puf-net.git.

  • Semantic Path Planning for Indoor Navigation Tasks Using Multi-View Context and Prior Knowledge

    Jianbing WU  Weibo HUANG  Guoliang HUA  Wanruo ZHANG  Risheng KANG  Hong LIU  

     
    PAPER-Positioning and Navigation

      Pubricized:
    2022/01/20
      Vol:
    E106-D No:5
      Page(s):
    756-764

    Recently, deep reinforcement learning (DRL) methods have significantly improved the performance of target-driven indoor navigation tasks. However, the rich semantic information of environments is still not fully exploited in previous approaches. In addition, existing methods usually tend to overfit on training scenes or objects in target-driven navigation tasks, making it hard to generalize to unseen environments. Human beings can easily adapt to new scenes as they can recognize the objects they see and reason the possible locations of target objects using their experience. Inspired by this, we propose a DRL-based target-driven navigation model, termed MVC-PK, using Multi-View Context information and Prior semantic Knowledge. It relies only on the semantic label of target objects and allows the robot to find the target without using any geometry map. To perceive the semantic contextual information in the environment, object detectors are leveraged to detect the objects present in the multi-view observations. To enable the semantic reasoning ability of indoor mobile robots, a Graph Convolutional Network is also employed to incorporate prior knowledge. The proposed MVC-PK model is evaluated in the AI2-THOR simulation environment. The results show that MVC-PK (1) significantly improves the cross-scene and cross-target generalization ability, and (2) achieves state-of-the-art performance with 15.2% and 11.0% increase in Success Rate (SR) and Success weighted by Path Length (SPL), respectively.

  • A Retransmission Scheme in IEEE 802.11be Synchronized Multi-Link WLANs

    Linjie ZHU  Liang GU  Rongliang CHEN  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    871-875

    A novel retransmission scheme, considering both transmission rate and frame error rate, is proposed to alleviate the inefficiencies caused by head-of-line blocking and null padding problems during retransmission in IEEE 802.11be synchronous multi-link wireless local area networks. Simulation results show that the proposed scheme improves throughput by up to 200% over the legacy scheme by reallocating lost subframes and adding effective duplicate subframes to multiple links.

281-300hit(12654hit)