The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] k(12654hit)

161-180hit(12654hit)

  • D2EcoSys: Decentralized Digital Twin EcoSystem Empower Co-Creation City-Level Digital Twins Open Access

    Kenji KANAI  Hidehiro KANEMITSU  Taku YAMAZAKI  Shintaro MORI  Aram MINE  Sumiko MIYATA  Hironobu IMAMURA  Hidenori NAKAZATO  

     
    INVITED PAPER

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    50-62

    A city-level digital twin is a critical enabling technology to construct a smart city that helps improve citizens' living conditions and quality of life. Currently, research and development regarding the digital replica city are pursued worldwide. However, many research projects only focus on creating the 3D city model. A mechanism to involve key players, such as data providers, service providers, and application developers, is essential for constructing the digital replica city and producing various city applications. Based on this motivation, the authors of this paper are pursuing a research project, namely Decentralized Digital Twin EcoSystem (D2EcoSys), to create an ecosystem to advance (and self-grow) the digital replica city regarding time and space directions, city services, and values. This paper introduces an overview of the D2EcoSys project: vision, problem statement, and approach. In addition, the paper discusses the recent research results regarding networking technologies and demonstrates an early testbed built in the Kashiwa-no-ha smart city.

  • Adaptive K-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR

    Arif DATAESATU  Kosuke SANADA  Hiroyuki HATANO  Kazuo MORI  Pisit BOONSRIMUANG  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    74-84

    The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.

  • Performance Evaluation and Demonstration of Real-Time Vehicle Control Information Exchange Using 5G New Radio Sidelink for Automated Follower Truck Platooning Open Access

    Manabu MIKAMI  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    85-93

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries that are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicle-to-Everything (V2X) communications for platooning are considered to be one of new 5G use cases whose ultra reliable and low latency communication (URLLC) aspects are required. The authors build a field experimental environment, towards application to truck platooning, with actual large-size trucks and a prototype system, for 5G New Radio (NR) technology based V2X communications. Its most distinctive feature is that the 5G NR-V2X prototype system is equipped with UE-to-UE radio interface (i.e., sidelink) for V2V Direct communication, in addition to the traditional radio interfaces between BS and UE for V2N/V2N2V communications. This paper presents performance evaluation and demonstration of real-time vehicle control information exchange using over the sidelink of 5G NR-V2X prototype system for automated follower truck platooning. This paper evaluates the V2V Direct communication latency and reliability performance of the sidelink, and clarify 5G NR sidelink achieves lower peak of latency and higher packet reception rate in V2V Direct communication performance than an optical wireless communication system product. Then, it also introduces a 5G URLLC use case demonstration of automated follower truck platooning trial employed with the prototype system in a public expressway environment.

  • Information-Centric Function Chaining for ICN-Based In-Network Computing in the Beyond 5G/6G Era Open Access

    Yusaku HAYAMIZU  Masahiro JIBIKI  Miki YAMAMOTO  

     
    PAPER

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    94-104

    Information-Centric Networking (ICN) originally innovated for efficient data distribution, is currently discussed to be applied to edge computing environment. In this paper, we focus on a more flexible context, in-network computing, which is enabled by ICN architecture. In ICN-based in-network computing, a function chaining (routing) method for chaining multiple functions located at different routers widely distributed in the network is required. Our proposal is a twofold approach, On-demand Routing for Responsive Route (OR3) and Route Records (RR). OR3 efficiently chains data and multiple functions compared with an existing routing method. RR reactively stores routing information to reduce communication/computing overhead. In this paper, we conducted a mathematical analytics in order to verify the correctness of the proposed routing algorithm. Moreover, we investigate applicabilities of OR3/RR to an edge computing context in the future Beyond 5G/6G era, in which rich computing resources are provided by mobile nodes thanks to the cutting-edge mobile device technologies. In the mobile environments, the optimum from viewpoint of “routing” is largely different from the stable wired environment. We address this challenging issue and newly propose protocol enhancements for OR3 by considering node mobility. Evaluation results reveal that mobility-enhanced OR3 can discover stable paths for function chaining to enable more reliable ICN-based in-network computing under the highly-dynamic network environment.

  • Optimal (r, δ)-Locally Repairable Codes from Reed-Solomon Codes

    Lin-Zhi SHEN  Yu-Jie WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/05/30
      Vol:
    E106-A No:12
      Page(s):
    1589-1592

    For an [n, k, d] (r, δ)-locally repairable codes ((r, δ)-LRCs), its minimum distance d satisfies the Singleton-like bound. The construction of optimal (r, δ)-LRC, attaining this Singleton-like bound, is an important research problem in recent years for thier applications in distributed storage systems. In this letter, we use Reed-Solomon codes to construct two classes of optimal (r, δ)-LRCs. The optimal LRCs are given by the evaluations of multiple polynomials of degree at most r - 1 at some points in Fq. The first class gives the [(r + δ - 1)t, rt - s, δ + s] optimal (r, δ)-LRC over Fq provided that r + δ + s - 1≤q, s≤δ, s

  • Integration of Network and Artificial Intelligence toward the Beyond 5G/6G Networks Open Access

    Atsushi TAGAMI  Takuya MIYASAKA  Masaki SUZUKI  Chikara SASAKI  

     
    INVITED PAPER

      Pubricized:
    2023/07/14
      Vol:
    E106-B No:12
      Page(s):
    1267-1274

    Recently, there has been a surge of interest in Artificial Intelligence (AI) and its applications have been considered in various fields. Mobile networks are becoming an indispensable part of our society, and are considered as one of the promising applications of AI. In the Beyond 5G/6G era, AI will continue to penetrate networks and AI will become an integral part of mobile networks. This paper provides an overview of the collaborations between networks and AI from two categories, “AI for Network” and “Network for AI,” and predicts mobile networks in the B5G/6G era. It is expected that the future mobile network will be an integrated infrastructure, which will not only be a mere application of AI, but also provide as the process infrastructure for AI applications. This integration requires a driving application, and the network operation is one of the leading candidates. Furthermore, the paper describes the latest research and standardization trends in the autonomous networks, which aims to fully automate network operation, as a future network operation concept with AI, and discusses research issues in the future mobile networks.

  • A Nationwide 400-Gbps Backbone Network for Research and Education in Japan Open Access

    Takashi KURIMOTO  Koji SASAYAMA  Osamu AKASHI  Kenjiro YAMANAKA  Naoya KITAGAWA  Shigeo URUSHIDANI  

     
    INVITED PAPER

      Pubricized:
    2023/06/01
      Vol:
    E106-B No:12
      Page(s):
    1275-1285

    This paper describes the architectural design, services, and operation and monitoring functions of Science Information NETwork 6 (SINET6), a 400-Gigabit Ethernet-based academic backbone network launched on a nationwide scale in April 2022. In response to the requirements from universities and research institutions, SINET upgraded its world-class network speed, improved its accessibility, enhanced services and security, incorporated 5G mobile functions, and strengthened international connectivity. With fully-meshed connectivity and fast rerouting, it attains nationwide high performance and high reliability. The evaluation results of network performance are also reported.

  • Secure Enrollment Token Delivery Mechanism for Zero Trust Networks Using Blockchain Open Access

    Javier Jose DIAZ RIVERA  Waleed AKBAR  Talha AHMED KHAN  Afaq MUHAMMAD  Wang-Cheol SONG  

     
    PAPER

      Pubricized:
    2023/06/01
      Vol:
    E106-B No:12
      Page(s):
    1293-1301

    Zero Trust Networking (ZTN) is a security model where no default trust is given to entities in a network infrastructure. The first bastion of security for achieving ZTN is strong identity verification. Several standard methods for assuring a robust identity exist (E.g., OAuth2.0, OpenID Connect). These standards employ JSON Web Tokens (JWT) during the authentication process. However, the use of JWT for One Time Token (OTT) enrollment has a latent security issue. A third party can intercept a JWT, and the payload information can be exposed, revealing the details of the enrollment server. Furthermore, an intercepted JWT could be used for enrollment by an impersonator as long as the JWT remains active. Our proposed mechanism aims to secure the ownership of the OTT by including the JWT as encrypted metadata into a Non-Fungible Token (NFT). The mechanism uses the blockchain Public Key of the intended owner for encrypting the JWT. The blockchain assures the JWT ownership by mapping it to the intended owner's blockchain public address. Our proposed mechanism is applied to an emerging Zero Trust framework (OpenZiti) alongside a permissioned Ethereum blockchain using Hyperledger Besu. The Zero Trust Framework provides enrollment functionality. At the same time, our proposed mechanism based on blockchain and NFT assures the secure distribution of OTTs that is used for the enrollment of identities.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • Data Gathering Method with High Accuracy of Environment Recognition Using Mathematical Optimization in Packet-Level Index Modulation

    Ryuji MIYAMOTO  Osamu TAKYU  Hiroshi FUJIWARA  Koichi ADACHI  Mai OHTA  Takeo FUJII  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1337-1349

    With the rapid developments in the Internet of Things (IoT), low power wide area networks (LPWAN) framework, which is a low-power, long-distance communication method, is attracting attention. However, in LPWAN, the access time is limited by Duty Cycle (DC) to avoid mutual interference. Packet-level index modulation (PLIM) is a modulation scheme that uses a combination of the transmission time and frequency channel of a packet as an index, enabling throughput expansion even under DC constraints. The indexes used in PLIM are transmitted according to the mapping. However, when many sensors access the same index, packet collisions occur owing to selecting the same index. Therefore, we propose a mapping design for PLIM using mathematical optimization. The mapping was designed and modeled as a quadratic integer programming problem. The results of the computer simulation evaluations were used to realize the design of PLIM, which achieved excellent sensor information aggregation in terms of environmental monitoring accuracy.

  • Deep Neural Networks Based End-to-End DOA Estimation System Open Access

    Daniel Akira ANDO  Yuya KASE  Toshihiko NISHIMURA  Takanori SATO  Takeo OHGANE  Yasutaka OGAWA  Junichiro HAGIWARA  

     
    PAPER

      Pubricized:
    2023/09/11
      Vol:
    E106-B No:12
      Page(s):
    1350-1362

    Direction of arrival (DOA) estimation is an antenna array signal processing technique used in, for instance, radar and sonar systems, source localization, and channel state information retrieval. As new applications and use cases appear with the development of next generation mobile communications systems, DOA estimation performance must be continually increased in order to support the nonstop growing demand for wireless technologies. In previous works, we verified that a deep neural network (DNN) trained offline is a strong candidate tool with the promise of achieving great on-grid DOA estimation performance, even compared to traditional algorithms. In this paper, we propose new techniques for further DOA estimation accuracy enhancement incorporating signal-to-noise ratio (SNR) prediction and an end-to-end DOA estimation system, which consists of three components: source number estimator, DOA angular spectrum grid estimator, and DOA detector. Here, we expand the performance of the DOA detector and angular spectrum estimator, and present a new solution for source number estimation based on DNN with very simple design. The proposed DNN system applied with said enhancement techniques has shown great estimation performance regarding the success rate metric for the case of two radio wave sources although not fully satisfactory results are obtained for the case of three sources.

  • Heuristic-Based Service Chain Construction with Security-Level Management

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1380-1391

    Network function virtualization (NFV) technology significantly changes the traditional communication network environments by providing network functions as virtual network functions (VNFs) on commercial off-the-shelf (COTS) servers. Moreover, for using VNFs in a pre-determined sequence to provide each network service, service chaining is essential. A VNF can provide multiple service chains with the corresponding network function, reducing the number of VNFs. However, VNFs might be the source or the target of a cyberattack. If the node where the VNF is installed is attacked, the VNF would also be easily attacked because of its security vulnerabilities. Contrarily, a malicious VNF may attack the node where it is installed, and other VNFs installed on the node may also be attacked. Few studies have been done on the security of VNFs and nodes for service chaining. This study proposes a service chain construction with security-level management. The security-level management concept is introduced to built many service chains. Moreover, the cost optimization problem for service chaining is formulated and the heuristic algorithm is proposed. We demonstrate the effectiveness of the proposed method under certain network topologies using numerical examples.

  • Robustness of Intensity-Modulation/Direct-Detection Secret Key Distribution against Spontaneous Raman Scattering in Wavelength-Multiplexed Systems with Existing Optical Transmission Signals

    Kyo INOUE  Daichi TERAZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2023/08/28
      Vol:
    E106-B No:12
      Page(s):
    1418-1423

    Quantum key distribution or secret key distribution (SKD) has been studied to deliver a secrete key for secure communications, whose security is physically guaranteed. For practical deployment, such systems are desired to be overlaid onto existing wavelength-multiplexing transmission systems, without using a dedicated transmission line. This study analytically investigates the feasibility of the intensity-modulation/direction-detection (IM/DD) SKD scheme being wavelength-multiplexed with conventional wavelength-division-multiplexed (WDM) signals, concerning spontaneous Raman scattering light from conventional optical signals. Simulation results indicate that IM/DD SKD systems are not degraded when they are overlaid onto practically deployed dense WDM transmission systems in the C-band, owing to the feature of the IM/DD SKD scheme, which uses a signal light with an intensity level comparable to conventional optical signals unlike conventional quantum key distribution schemes.

  • Joint Virtual Network Function Deployment and Scheduling via Heuristics and Deep Reinforcement Learning

    Zixiao ZHANG  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/08/01
      Vol:
    E106-B No:12
      Page(s):
    1424-1440

    This paper introduces heuristic approaches and a deep reinforcement learning approach to solve a joint virtual network function deployment and scheduling problem in a dynamic scenario. We formulate the problem as an optimization problem. Based on the mathematical description of the optimization problem, we introduce three heuristic approaches and a deep reinforcement learning approach to solve the problem. We define an objective to maximize the ratio of delay-satisfied requests while minimizing the average resource cost for a dynamic scenario. Our introduced two greedy approaches are named finish time greedy and computational resource greedy, respectively. In the finish time greedy approach, we make each request be finished as soon as possible despite its resource cost; in the computational resource greedy approach, we make each request occupy as few resources as possible despite its finish time. Our introduced simulated annealing approach generates feasible solutions randomly and converges to an approximate solution. In our learning-based approach, neural networks are trained to make decisions. We use a simulated environment to evaluate the performances of our introduced approaches. Numerical results show that the introduced deep reinforcement learning approach has the best performance in terms of benefit in our examined cases.

  • Stackelberg Game for Wireless-Powered Relays Assisted Batteryless IoT Networks

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/10
      Vol:
    E106-B No:12
      Page(s):
    1479-1490

    In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.

  • Machine Learning-Based Compensation Methods for Weight Matrices of SVD-MIMO Open Access

    Kiminobu MAKINO  Takayuki NAKAGAWA  Naohiko IAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:12
      Page(s):
    1441-1454

    This paper proposes and evaluates machine learning (ML)-based compensation methods for the transmit (Tx) weight matrices of actual singular value decomposition (SVD)-multiple-input and multiple-output (MIMO) transmissions. These methods train ML models and compensate the Tx weight matrices by using a large amount of training data created from statistical distributions. Moreover, this paper proposes simplified channel metrics based on the channel quality of actual SVD-MIMO transmissions to evaluate compensation performance. The optimal parameters are determined from many ML parameters by using the metrics, and the metrics for this determination are evaluated. Finally, a comprehensive computer simulation shows that the optimal parameters improve performance by up to 7.0dB compared with the conventional method.

  • Effect of Return Current Cable in Three Different Calibration Environments on Ringing Damped Oscillations of Contact Discharge Current Waveform from ESD Generator

    Yukihiro TOZAWA  Takeshi ISHIDA  Jiaqing WANG  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/09/06
      Vol:
    E106-B No:12
      Page(s):
    1455-1462

    Measurements of contact discharge current waveforms from an ESD generator with a test voltage of 4kV are conducted with the IEC specified arrangement of a 2m long return current cable in different three calibration environments that all comply with the IEC calibration standard to identify the occurrence source of damped oscillations (ringing), which has remained unclear since contact discharge testing was first adopted in 1989 IEC publication 801-2. Their frequency spectra are analyzed comparing with the spectrum calculated from the ideal contact discharge current waveform without ringing (IEC specified waveform) offered in IEC 61000-4-2 and the spectra derived from a simplified equivalent circuit based on the IEC standard in combination with the measured input impedances of one-ended grounding return current cable with the same arrangement in the same calibration environment as those for the current measurements. The results show that the measured contact discharge waveforms have ringing around the IEC specified waveform after the falling edge of the peak, causing their spectra from 20MHz to 200MHz, but the spectra from 40MHz to 200MHz significantly differ depending on the calibration environments even for the same cable arrangement, which do not almost affect the spectra from 20MHz to 40MHz and over 200MHz. In the calibration environment under the cable arrangement close to the reference ground, the spectral shapes of the measured contact discharge currents and their frequencies of the multiple peaks and dips roughly correspond to the spectral distributions calculated from the simplified equivalent circuit using the measured cable input impedances. These findings reveal that the root cause of ringing is mainly due to the resonances of the return current cable, and calibration environment under the cable arrangement away from the reference ground tends to mitigate the cable resonances.

  • Design of a Dual-Band Load-Modulated Sequential Amplifier with Extended Back-off

    Minghui YOU  Guohua LIU  Zhiqun CHENG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/06/07
      Vol:
    E106-C No:12
      Page(s):
    808-811

    This letter presents a dual-band load-modulated sequential amplifier (LMSA). The proposed amplifier changed the attenuator terminated at the isolation port of the four-port combiner of the traditional sequential power amplifier (SPA) architecture into a reactance modulation network (RMN) for load modulation. The impedance can be maintained pure resistance by designing RMN, thus realizing high efficiency and a good portion of the output power in the multiple bands. Compared to the dual-band Doherty power amplifier with a complex dual-band load modulation network (LMN), the proposed LMSA has advantages as maintaining high output power back-off (OBO) efficiency, wide bandwidth and simple construction. A 10-watt dual-band LMSA is simulated and measured in 1.7-1.9GHz and 2.4-2.6GHz with saturated efficiencies 61.2-69.9% and 54.4-70.8%, respectively. The corresponding 9dB OBO efficiency is 46.5-57.1% and 46.4-54.4%, respectively.

  • Optimization Algorithm with Automatic Adjustment of the Number of Switches in the Order/Radix Problem

    Masaki TSUKAMOTO  Yoshiko HANADA  Masahiro NAKAO  Keiji YAMAMOTO  

     
    PAPER

      Pubricized:
    2023/06/12
      Vol:
    E106-D No:12
      Page(s):
    1979-1987

    The Order/Radix Problem (ORP) is an optimization problem that can be solved to find an optimal network topology in distributed memory systems. It is important to find the optimum number of switches in the ORP. In the case of a regular graph, a good estimation of the preferred number of switches has been proposed, and it has been shown that simulated annealing (SA) finds a good solution given a fixed number of switches. However, generally the optimal graph does not necessarily satisfy the regular condition, which greatly increases the computational costs required to find a good solution with a suitable number of switches for each case. This study improved the new method based on SA to find a suitable number of switches. By introducing neighborhood searches in which the number of switches is increased or decreased, our method can optimize a graph by changing the number of switches adaptively during the search. In numerical experiments, we verified that our method shows a good approximation for the best setting for the number of switches, and can simultaneously generate a graph with a small host-to-host average shortest path length, using instances presented by Graph Golf, an international ORP competition.

  • MITA: Multi-Input Adaptive Activation Function for Accurate Binary Neural Network Hardware

    Peiqi ZHANG  Shinya TAKAMAEDA-YAMAZAKI  

     
    PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-D No:12
      Page(s):
    2006-2014

    Binary Neural Networks (BNN) have binarized neuron and connection values so that their accelerators can be realized by extremely efficient hardware. However, there is a significant accuracy gap between BNNs and networks with wider bit-width. Conventional BNNs binarize feature maps by static globally-unified thresholds, which makes the produced bipolar image lose local details. This paper proposes a multi-input activation function to enable adaptive thresholding for binarizing feature maps: (a) At the algorithm level, instead of operating each input pixel independently, adaptive thresholding dynamically changes the threshold according to surrounding pixels of the target pixel. When optimizing weights, adaptive thresholding is equivalent to an accompanied depth-wise convolution between normal convolution and binarization. Accompanied weights in the depth-wise filters are ternarized and optimized end-to-end. (b) At the hardware level, adaptive thresholding is realized through a multi-input activation function, which is compatible with common accelerator architectures. Compact activation hardware with only one extra accumulator is devised. By equipping the proposed method on FPGA, 4.1% accuracy improvement is achieved on the original BNN with only 1.1% extra LUT resource. Compared with State-of-the-art methods, the proposed idea further increases network accuracy by 0.8% on the Cifar-10 dataset and 0.4% on the ImageNet dataset.

161-180hit(12654hit)