The search functionality is under construction.

Keyword Search Result

[Keyword] multi-user(86hit)

1-20hit(86hit)

  • A Lightweight Graph Neural Networks Based Enhanced Separated Detection Scheme for Downlink MIMO-SCMA Systems Open Access

    Zikang CHEN  Wenping GE  Henghai FEI  Haipeng ZHAO  Bowen LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:4
      Page(s):
    368-376

    The combination of multiple-input multiple-output (MIMO) technology and sparse code multiple access (SCMA) can significantly enhance the spectral efficiency of future wireless communication networks. However, the receiver design for downlink MIMO-SCMA systems faces challenges in developing multi-user detection (MUD) schemes that achieve both low latency and low bit error rate (BER). The separated detection scheme in the MIMO-SCMA system involves performing MIMO detection first to obtain estimated signals, followed by SCMA decoding. We propose an enhanced separated detection scheme based on lightweight graph neural networks (GNNs). In this scheme, we raise the concept of coordinate point relay and full-category training, which allow for the substitution of the conventional message passing algorithm (MPA) in SCMA decoding with image classification techniques based on deep learning (DL). The features of the images used for training encompass crucial information such as the amplitude and phase of estimated signals, as well as channel characteristics they have encountered. Furthermore, various types of images demonstrate distinct directional trends, contributing additional features that enhance the precision of classification by GNNs. Simulation results demonstrate that the enhanced separated detection scheme outperforms existing separated and joint detection schemes in terms of computational complexity, while having a better BER performance than the joint detection schemes at high Eb/N0 (energy per bit to noise power spectral density ratio) values.

  • Tight Security of Twin-DH Hashed ElGamal KEM in Multi-User Setting

    Yuji HASHIMOTO  Koji NUIDA  Goichiro HANAOKA  

     
    PAPER

      Pubricized:
    2021/08/30
      Vol:
    E105-A No:3
      Page(s):
    173-181

    It is an important research area to construct a cryptosystem that satisfies the security for multi-user setting. In addition, it is desirable that such a cryptosystem is tightly secure and the ciphertext size is small. For IND-CCA public key encryption schemes for multi-user setting with constant-size ciphertexts tightly secure under the DH assumptions, in 2020, Y. Sakai and G. Hanaoka firstly proposed such a scheme (implicitly based on hybrid encryption paradigm) under the DDH assumption. More recently, Y. Lee et al. proposed such a hybrid encryption scheme (with slightly stronger security) where the assumption for the KEM part is weakened to the CDH assumption. In this paper, we revisit the twin-DH hashed ElGamal KEM with even shorter ciphertexts than those schemes, and prove that its IND-CCA security for multi-user setting is in fact tightly reducible to the CDH assumption.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

  • Two-Step User Selection Algorithm in Multi-User Massive MIMO with Hybrid Beamforming for 5G Evolution

    Nobuhide NONAKA  Satoshi SUYAMA  Tatsuki OKUYAMA  Kazushi MURAOKA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2021/04/07
      Vol:
    E104-B No:9
      Page(s):
    1089-1096

    In order to realize the higher bit rates compared for the fifth-generation (5G) mobile communication system, massive MIMO technologies in higher frequency bands with wider bandwidth are being investigated for 5G evolution and 6G. One of practical method to realize massive MIMO in the high frequency bands is hybrid beamforming (BF). With this approach, user selection is an important function because its performance is highly affected by inter-user interference. However, the computational complexity of user selection in multi-user massive MIMO is high because MIMO channel matrix size excessive. Furthermore, satisfying user fairness by proportional fairness (PF) criteria leads to further increase of the complexity because re-calculation of precoding and postcoding matrices is required for each combination of selected users. To realize a fair and low-complexity user selection algorithm for multi-user massive MIMO employing hybrid BF, this paper proposes a two-step user selection algorithm that combines PF based user selection and chordal distance user selection. Computer simulations show that the proposed two-step user selection algorithm with higher user fairness and lower computational complexity can achieve higher system performance than the conventional user selection algorithms.

  • Distributed Detection of MIMO Spatial Multiplexed Signals in Terminal Collaborated Reception

    Fengning DU  Hidekazu MURATA  Mampei KASAI  Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/29
      Vol:
    E104-B No:7
      Page(s):
    884-892

    Distributed detection techniques of multiple-input multiple-output (MIMO) spatially multiplexed signals are studied in this paper. This system considered employs multiple mobile stations (MSs) to receive signals from a base station, and then share their received signal waveforms with collaborating MSs. In order to reduce the amount of traffic over the collaborating wireless links, distributed detection techniques are proposed, in which multiple MSs are in charge of detection by making use of both the shared signal waveforms and its own received waveform. Selection combining schemes of detected bit sequences are studied to finalize the decisions. Residual error coefficients in iterative MIMO equalization and detection are utilized in this selection. The error-ratio performance is elucidated not only by computer simulations, but also by offline processing using experimental signals recorded in a measurement campaign.

  • Coordinated Scheduling of 802.11ax Wireless LAN Systems Using Hierarchical Clustering

    Kenichi KAWAMURA  Akiyoshi INOKI  Shouta NAKAYAMA  Keisuke WAKAO  Yasushi TAKATORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    80-87

    A method is presented for increasing wireless LAN (WLAN) capacity in high-density environments with IEEE 802.11ax systems. We propose using coordinated scheduling of trigger frames based on our mobile cooperative control concept. High-density WLAN systems are managed by a management server, which gathers wireless environmental information from user equipment through cellular access. Hierarchical clustering of basic service sets is used to form synchronized clusters to reduce interference and increase throughput of high-density WLAN systems based on mobile cooperative control. This method increases uplink capacity by up to 19.4% and by up to 11.3% in total when WLAN access points are deployed close together. This control method is potentially effective for IEEE 802.11ax WLAN systems utilized as 5G mobile network components.

  • Digital Beamforming Algorithm for 5G Low-SHF Band Massive MIMO

    Shohei YOSHIOKA  Satoshi SUYAMA  Tatsuki OKUYAMA  Jun MASHINO  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1371-1381

    Towards furthering the industrial revolution, the concept of a new cellular network began to be drawn up around 2010 as the fifth generation (5G) mobile wireless communication system. One of the main differences between the fourth generation (4G) mobile communication system Long Term Evolution (LTE) and 5G new radio (NR) is the frequency bands utilized. 5G NR assumes higher frequency bands. Effective utilization of the higher frequency bands needs to resolve the technical issue of the larger path-loss. Massive multiple-input multiple-output (Massive MIMO) beamforming (BF) technology contributes to overcome this problem, hence further study of Massive MIMO BF for each frequency band is necessary toward high-performance and easy implementation. In this paper, then, we propose a Massive MIMO method with fully-digital BF based on two-tap precoding for low super high frequency (SHF) band downlink (DL) transmissions (called as Digital FBCP). Additionally, three intersite coordination algorithms for Digital FBCP are presented for multi-site environments and one of the three algorithms is enhanced. It is shown that Digital FBCP achieves better throughput performance than a conventional algorithm with one-tap precoding. Considering performance of intersite coordination as well, it is concluded that Digital FBCP can achieve around 5 Gbps in various practical environments.

  • Performance Comparison of Multi-User Shared Multiple Access Scheme in Uplink Channels Open Access

    Eiji OKAMOTO  Manabu MIKAMI  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1458-1466

    In fifth-generation mobile communications systems (5G), grant-free non-orthogonal multiple access (NOMA) schemes have been considered as a way to accommodate the many wireless connections required for Internet of Things (IoT) devices. In NOMA schemes, both system capacity enhancement and transmission protocol simplification are achieved, and an overload test of more than one hundred percent of the transmission samples over conducted. Multi-user shared multiple access (MUSA) has been proposed as a representative scheme for NOMA. However, the performance of MUSA has not been fully analyzed nor compared to other NOMA or orthogonal multiple access schemes. Therefore, in this study, we theoretically and numerically analyze the performance of MUSA in uplink fading environments and compare it with orthogonal frequency division multiple access (OFDMA), space division multiple access-based OFDMA, low-density signature, and sparse code multiple access. The characteristics and superiority of MUSA are then clarified.

  • Experimental Study of Large-Scale Coordinated Multi-User MIMO for 5G Ultra High-Density Distributed Antenna Systems

    Takaharu KOBAYASHI  Masafumi TSUTSUI  Takashi DATEKI  Hiroyuki SEKI  Morihiko MINOWA  Chiyoshi AKIYAMA  Tatsuki OKUYAMA  Jun MASHINO  Satoshi SUYAMA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1390-1400

    Fifth-generation mobile communication systems (5G) must offer significantly higher system capacity than 4G in order to accommodate the rapidly increasing mobile data traffic. Cell densification has been considered an effective way to increase system capacity. Unfortunately, each user equipment (UE) will be in line-of-sight to many more transmission points (TPs) and the resulting inter-cell interference will degrade system capacity. We propose large-scale coordinated multi-user multiple-input multiple-output (LSC-MU-MIMO), which combines MU-MIMO with joint transmission from all the TPs connected to a centralized baseband unit. We previously investigated the downlink performance of LSC-MU-MIMO by computer simulation and found that it can significantly reduce inter-TP interference and improve the system capacity of high-density small cells. In this paper, we investigate the throughput of LSC-MU-MIMO through an indoor trial where the number of coordinated TPs is up to sixteen by using an experimental system that can execute real-time channel estimation based on TDD reciprocity and real-time data transmission. To clarify the improvement in the system capacity of LSC-MU-MIMO, we compared the throughput measured in the same experimental area with and without coordinated transmission in 4-TP, 8-TP, and 16-TP configurations. The results show that with coordinated transmission the system capacity is almost directly proportional to the number of TPs.

  • Design of Criterion for Adaptively Scaled Belief in Iterative Large MIMO Detection Open Access

    Takumi TAKAHASHI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/07/30
      Vol:
    E102-B No:2
      Page(s):
    285-297

    This paper proposes a new design criterion of adaptively scaled belief (ASB) in Gaussian belief propagation (GaBP) for large multi-user multi-input multi-output (MU-MIMO) detection. In practical MU detection (MUD) scenarios, the most vital issue for improving the convergence property of GaBP iterative detection is how to deal with belief outliers in each iteration. Such outliers are caused by modeling errors due to the fact that the law of large number does not work well when it is difficult to satisfy the large system limit. One of the simplest ways to mitigate the harmful impact of outliers is belief scaling. A typical approach for determining the scaling parameter for the belief is to create a look-up table (LUT) based on the received signal-to-noise ratio (SNR) through computer simulations. However, the instantaneous SNR differs among beliefs because the MIMO channels in the MUD problem are random; hence, the creation of LUT is infeasible. To stabilize the dynamics of the random MIMO channels, we propose a new transmission block based criterion that adapts belief scaling to the instantaneous channel state. Finally, we verify the validity of ASB in terms of the suppression of the bit error rate (BER) floor.

  • Performance Analysis of Block MSN Algorithm with Pseudo-Noise Control in Multi-User MIMO System Open Access

    Nobuyoshi KIKUMA  Kousuke YONEZU  Kunio SAKAKIBARA  

     
    PAPER-MIMO

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    224-232

    MU-MIMO (Multi-User Multiple Input and Multiple Output) has been considered as a fundamental technology for simultaneous communications between a base station and multiple users. This is because it can generate a large virtual MIMO channel between a base station and multiple user terminals with effective utilization of wireless resources. As a method of implementing MU-MIMO downlink, Block Diagonalization (BD) was proposed in which the transmission weights are determined to cancel interference between multiple user terminals. On the other hand, Block Maximum Signal-to-Noise ratio (BMSN) was proposed which determines the transmission weights to enhance the gain for each user terminal in addition to the interference cancellation. As a feature, BMSN has a pseudo-noise for controlling the null depth to the interference. In this paper, to enhance further the BMSN performance, we propose the BMSN algorithm that has the pseudo-noise determined according to receiver SNR. As a result of computer simulation, it is confirmed that the proposed BMSN algorithm shows the significantly improved performance in evaluation of bit error rate (BER) and achievable bit rate (ABR).

  • The PRF Security of Compression-Function-Based MAC Functions in the Multi-User Setting Open Access

    Shoichi HIROSE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    270-277

    A compression-function-based MAC function called FMAC was presented as well as a vector-input PRF called vFMAC in 2016. They were proven to be secure PRFs on the assumption that their compression function is a secure PRF against related-key attacks with respect to their non-cryptographic permutations in the single user setting. In this paper, it is shown that both FMAC and vFMAC are also secure PRFs in the multi-user setting on the same assumption as in the single user setting. These results imply that their security in the multi-user setting does not degrade with the number of the users and is as good as in the single user setting.

  • Dynamic Group-Based Antenna Selection for Uplink Multi-User MIMO in Distributed Antenna System

    Sho YOSHIDA  Kentaro NISHIMORI  Soichi ITO  Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1552-1560

    This paper proposes a hardware configuration for uplink multi-user multiple-input multiple-output (MU-MIMO) transmissions in a distributed antenna system (DAS). The demand for high-speed transmission in the uplink has increased recently, because of which standardizations in LTE-advanced and IEEE 802.11ax networks is currently underway. User terminal (UT) scheduling on the downlink MU-MIMO transmission is easy even in unlicensed band such as those in wireless local area network (WLAN) systems. However, the detailed management of the UTs is difficult on the uplink MU-MIMO transmissions because of the decentralized wireless access control. The proposed configuration allows an antenna to be selected from an external device on the access point (AP). All AP antennas are divided into groups, and the received signal in each group is input to the amplitude detector via a directional coupler. Subsequently, the selected antenna is fed by a multiple-to-one switch instead of a matrix switch. To clarify the effectiveness of the proposed configuration, we conduct computer simulations based on the ray-tracing method for propagation channels in an indoor environment.

  • Non-Linear Precoding Scheme Using MMSE Based Successive Inter-User Interference Pre-Cancellation and Perturbation Vector Search for Downlink MU-MIMO Systems

    Kenji HOSHINO  Manabu MIKAMI  Sourabh MAITI  Hitoshi YOSHINO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    451-461

    Non-linear precoding (NLP) scheme for downlink multi-user multiple-input multiple-output (DL-MU-MIMO) transmission has received much attention as a promising technology to achieve high capacity within the limited bandwidths available to radio access systems. In order to minimize the required transmission power for DL-MU-MIMO and achieve high spectrum efficiency, Vector Perturbation (VP) was proposed as an optimal NLP scheme. Unfortunately, the original VP suffers from significant computation complexity in detecting the optimal perturbation vector from an infinite number of the candidates. To reduce the complexity with near transmission performance of VP, several recent studies investigated various efficient NLP schemes based on the concept of Tomlinson-Harashima precoding (THP) that applies successive pre-cancellation of inter-user interference (IUI) and offsets the transmission vector based on a modulo operation. In order to attain transmission performance improvement over the original THP, a previous work proposed Minimum Mean Square Error based THP (MMSE-THP) employing IUI successive pre-cancellation based on MMSE criteria. On the other hand, to improve the transmission performance of MMSE-THP, other previous works proposed Ordered MMSE-THP and Lattice-Reduction-Aided MMSE-THP (LRA MMSE-THP). This paper investigates the further transmission performance improvement of Ordered MMSE-THP and LRA MMSE-THP. This paper starts by proposing an extension of MMSE-THP employing a perturbation vector search (PVS), called PVS MMSE-THP as a novel NLP scheme, where the modulo operation is substituted by PVS and a subtraction operation from the transmit signal vector. Then, it introduces an efficient search algorithm of appropriate perturbation vector based on a depth-first branch-and-bound search for PVS MMSE-THP. Next, it also evaluates the transmission performance of PVS MMSE-THP with the appropriate perturbation vector detected by the efficient search algorithm. Computer simulations quantitatively clarify that PVS MMSE-THP achieves better transmission performance than the conventional NLP schemes. Moreover, it also clarifies that PVS MMSE-THP increases the effect of required transmission power reduction with the number of transmit antennas compared to the conventional NLP schemes.

  • Next-Activity Set Prediction Based on Sequence Partitioning to Reduce Activity Pattern Complexity in the Multi-User Smart Space

    Younggi KIM  Younghee LEE  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:10
      Page(s):
    2587-2596

    Human activity prediction has become a prerequisite for service recommendation and anomaly detection systems in a smart space including ambient assisted living (AAL) and activities of daily living (ADL). In this paper, we present a novel approach to predict the next-activity set in a multi-user smart space. Differing from the majority of the previous studies considering single-user activity patterns, our study considers multi-user activities that occur with a large variety of patterns. Its complexity increases exponentially according to the number of users. In the multi-user smart space, there can be inevitably multiple next-activity candidates after multi-user activities occur. To solve the next-activity problem in a multi-user situation, we propose activity set prediction rather than one activity prediction. We also propose activity sequence partitioning to reduce the complexity of the multi-user activity pattern. This divides an activity sequence into start, ongoing, and finish zones based on the features in the tendency of activity occurrences. The majority of the activities in a multi-user environment occur at the beginning or end, rather than the middle, of an activity sequence. Furthermore, the types of activities typically occurring in each zone can be sufficiently distinguishable. Exploiting these characteristics, we suggest a two-step procedure to predict the next-activity set utilizing a long short-term memory (LSTM) model. The first step identifies the zones to which current activities belong. In the next step, we construct three different LSTM models to predict the next-activity set in each zone. To evaluate the proposed approach, we experimented using a real dataset generated from our campus testbed. Our experiments confirmed the complexity reduction and high accuracy in the next-activity set prediction. Thus, it can be effectively utilized for various applications with context-awareness in a multi-user smart space.

  • A Study on Multi-User Interference Cancellers for Synchronous Optical CDMA Systems — Decision Distance and Bit Error Rate —

    Tomoko K. MATSUSHIMA  Masaki KAKUYAMA  Yuya MURATA  Yasuaki TERAMACHI  Shoichiro YAMASAKI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:10
      Page(s):
    2135-2145

    Several kinds of techniques for excellent multi-user interference (MUI) cancellation have been proposed for direct-detection synchronous optical code division multiple access (OCDMA) systems. All these techniques utilize modified prime sequence codes (MPSCs) as signature codes and can remove MUI errors efficiently. In this paper, the features of three typical MUI cancellers are studied and compared in detail. The authors defined the parameter “decision distance” to show the feature of MUI cancellers. The bit error rate performance of each canceller is investigated by computer simulation and compared with that of the basic on-off keying (OOK) scheme without cancellation. Then, we investigate the relationship between the decision distance and the bit error rate performance. It is shown that every canceller has a better bit error rate performance than the basic OOK scheme. Especially, the equal weight orthogonal (EWO) scheme, whose decision distance is the largest, has the best error resistance property of the three MUI cancellers. The results show that the decision distance is a useful index to evaluate the error resistance property of MUI cancellation schemes.

  • Cooperative Distributed Antenna Transmission for 5G Mobile Communications Network

    Fumiyuki ADACHI  Amnart BOONKAJAY  Yuta SEKI  Tomoyuki SAITO  Shinya KUMAGAI  Hiroyuki MIYAZAKI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1190-1204

    In this paper, the recent advances in cooperative distributed antenna transmission (CDAT) are introduced for spatial diversity and multi-user spatial multiplexing in 5G mobile communications network. CDAT is an advanced version of the coordinated multi-point (CoMP) transmission. Space-time block coded transmit diversity (STBC-TD) for spatial diversity and minimum mean square error filtering combined with singular value decomposition (MMSE-SVD) for multi-user spatial multiplexing are described under the presence of co-channel interference from adjacent macro-cells. Blind selected mapping (blind SLM) which requires no side information transmission is introduced in order to suppress the increased peak-to-average signal power ratio (PAPR) of the transmit signals when CDAT is applied. Some computer simulation results are presented to confirm the effectiveness of CDAT techniques.

  • Antenna Array Arrangement for Massive MIMO to Reduce Channel Spatial Correlation in LOS Environment

    Takuto ARAI  Atsushi OHTA  Yushi SHIRATO  Satoshi KUROSAKI  Kazuki MARUTA  Tatsuhiko IWAKUNI  Masataka IIZUKA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/21
      Vol:
    E100-B No:4
      Page(s):
    594-601

    This paper proposes a new antenna array design of Massive MIMO for capacity enhancement in line of sight (LOS) environments. Massive MIMO has two key problems: the heavy overhead of feeding back the channel state information (CSI) for very large number of transmission and reception antenna element pairs and the huge computation complexity imposed by the very large scale matrixes. We have already proposed a practical application of Massive MIMO, that is, Massive Antenna Systems for Wireless Entrance links (MAS-WE), which can clearly solve the two key problems of Massive MIMO. However, the conventional antenna array arrangements; e.g. uniform planar array (UPA) or uniform circular array (UCA) degrade the system capacity of MAS-WE due to the channel spatial correlation created by the inter-element spacing. When the LOS component dominates the propagation channel, the antenna array can be designed to minimize the inter-user channel correlation. We propose an antenna array arrangement to control the grating-lobe positions and achieve very low channel spatial correlation. Simulation results show that the proposed arrangement can reduce the spatial correlation at CDF=50% value by 80% compared to UCA and 75% compared to UPA.

  • Multi-Divisible On-Line/Off-Line Encryptions

    Dan YAMAMOTO  Wakaha OGATA  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    91-102

    We present a new notion of public-key encryption, called multi-divisible on-line/off-line encryptions, in which partial ciphertexts can be computed and made publicly available for the recipients before the recipients' public key and/or the plaintexts are determined. We formalize its syntax and define several security notions with regard to the level of divisibility, the number of users, and the number of encryption (challenge) queries per user. Furthermore, we show implications and separations between these security notions and classify them into three categories. We also present concrete multi-divisible on-line/off-line encryption schemes. The schemes allow the computationally-restricted and/or bandwidth-restricted devices to transmit ciphertexts with low computational overhead and/or low-bandwidth network.

  • An Error-Propagation Minimization Based Signal Selection Scheme for QRM-MLD

    Ilmiawan SHUBHI  Hidekazu MURATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:7
      Page(s):
    1566-1576

    Recently, multi-user multiple-input multiple-output (MU-MIMO) systems are being widely studied. For interference cancellation, MU-MIMO commonly uses spatial precoding techniques. These techniques, however, require the transmitters to have perfect knowledge of the downlink channel state information (CSI), which is hard to achieve in high mobility environments. Instead of spatial precoding, a collaborative interference cancellation (CIC) technique can be implemented for these environments. In CIC, mobile stations (MSs) collaborate and share their received signals to increase the demultiplexing capabilities. To obtain efficient signal-exchange between collaborating users, signal selection can be implemented. In this paper, a signal selection scheme suitable for a QRM-MLD algorithm is proposed. The proposed scheme uses the minimum Euclidean distance criterion to obtain an optimum bit error rate (BER) performance. Numerical results obtained through computer simulations show that the proposed scheme is able to provide BER performance near to that of MLD even when the number of candidates in QRM-MLD is relatively small. In addition, the proposed scheme is feasible to implement owing to its low computational complexity.

1-20hit(86hit)