The search functionality is under construction.

Keyword Search Result

[Keyword] network(4507hit)

21-40hit(4507hit)

  • Overfitting Problem of ANN- and VSTF-Based Nonlinear Equalizers Trained on Repeated Random Bit Sequences Open Access

    Kai IKUTA  Jinya NAKAMURA  Moriya NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E107-B No:4
      Page(s):
    349-356

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

  • Constraints and Evaluations on Signature Transmission Interval for Aggregate Signatures with Interactive Tracing Functionality Open Access

    Ryu ISHII  Kyosuke YAMASHITA  Zihao SONG  Yusuke SAKAI  Tadanori TERUYA  Takahiro MATSUDA  Goichiro HANAOKA  Kanta MATSUURA  Tsutomu MATSUMOTO  

     
    PAPER

      Pubricized:
    2023/10/10
      Vol:
    E107-A No:4
      Page(s):
    619-633

    Fault-tolerant aggregate signature (FT-AS) is a special type of aggregate signature that is equipped with the functionality for tracing signers who generated invalid signatures in the case an aggregate signature is detected as invalid. In existing FT-AS schemes (whose tracing functionality requires multi-rounds), a verifier needs to send a feedback to an aggregator for efficiently tracing the invalid signer(s). However, in practice, if this feedback is not responded to the aggregator in a sufficiently fast and timely manner, the tracing process will fail. Therefore, it is important to estimate whether this feedback can be responded and received in time on a real system. In this work, we measure the total processing time required for the feedback by implementing an existing FT-AS scheme, and evaluate whether the scheme works without problems in real systems. Our experimental results show that the time required for the feedback is 605.3 ms for a typical parameter setting, which indicates that if the acceptable feedback time is significantly larger than a few hundred ms, the existing FT-AS scheme would effectively work in such systems. However, there are situations where such feedback time is not acceptable, in which case the existing FT-AS scheme cannot be used. Therefore, we further propose a novel FT-AS scheme that does not require any feedback. We also implement our new scheme and show that a feedback in this scheme is completely eliminated but the size of its aggregate signature (affecting the communication cost from the aggregator to the verifier) is 144.9 times larger than that of the existing FT-AS scheme (with feedbacks) for a typical parameter setting, and thus has a trade-off between the feedback waiting time and the communication cost from the verifier to the aggregator with the existing FT-AS scheme.

  • Power Analysis of Floating-Point Operations for Leakage Resistance Evaluation of Neural Network Model Parameters

    Hanae NOZAKI  Kazukuni KOBARA  

     
    PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:3
      Page(s):
    331-343

    In the field of machine learning security, as one of the attack surfaces especially for edge devices, the application of side-channel analysis such as correlation power/electromagnetic analysis (CPA/CEMA) is expanding. Aiming to evaluate the leakage resistance of neural network (NN) model parameters, i.e. weights and biases, we conducted a feasibility study of CPA/CEMA on floating-point (FP) operations, which are the basic operations of NNs. This paper proposes approaches to recover weights and biases using CPA/CEMA on multiplication and addition operations, respectively. It is essential to take into account the characteristics of the IEEE 754 representation in order to realize the recovery with high precision and efficiency. We show that CPA/CEMA on FP operations requires different approaches than traditional CPA/CEMA on cryptographic implementations such as the AES.

  • Ensemble Malware Classifier Considering PE Section Information

    Ren TAKEUCHI  Rikima MITSUHASHI  Masakatsu NISHIGAKI  Tetsushi OHKI  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:3
      Page(s):
    306-318

    The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.

  • Simultaneous Adaptation of Acoustic and Language Models for Emotional Speech Recognition Using Tweet Data

    Tetsuo KOSAKA  Kazuya SAEKI  Yoshitaka AIZAWA  Masaharu KATO  Takashi NOSE  

     
    PAPER

      Pubricized:
    2023/12/05
      Vol:
    E107-D No:3
      Page(s):
    363-373

    Emotional speech recognition is generally considered more difficult than non-emotional speech recognition. The acoustic characteristics of emotional speech differ from those of non-emotional speech. Additionally, acoustic characteristics vary significantly depending on the type and intensity of emotions. Regarding linguistic features, emotional and colloquial expressions are also observed in their utterances. To solve these problems, we aim to improve recognition performance by adapting acoustic and language models to emotional speech. We used Japanese Twitter-based Emotional Speech (JTES) as an emotional speech corpus. This corpus consisted of tweets and had an emotional label assigned to each utterance. Corpus adaptation is possible using the utterances contained in this corpus. However, regarding the language model, the amount of adaptation data is insufficient. To solve this problem, we propose an adaptation of the language model by using online tweet data downloaded from the internet. The sentences used for adaptation were extracted from the tweet data based on certain rules. We extracted the data of 25.86 M words and used them for adaptation. In the recognition experiments, the baseline word error rate was 36.11%, whereas that with the acoustic and language model adaptation was 17.77%. The results demonstrated the effectiveness of the proposed method.

  • CMND: Consistent-Aware Multi-Server Network Design Model for Delay-Sensitive Applications

    Akio KAWABATA  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network System

      Vol:
    E107-B No:3
      Page(s):
    321-329

    This paper proposes a network design model, considering data consistency for a delay-sensitive distributed processing system. The data consistency is determined by collating the own state and the states of slave servers. If the state is mismatched with other servers, the rollback process is initiated to modify the state to guarantee data consistency. In the proposed model, the selected servers and the master-slave server pairs are determined to minimize the end-to-end delay and the delay for data consistency. We formulate the proposed model as an integer linear programming problem. We evaluate the delay performance and computation time. We evaluate the proposed model in two network models with two, three, and four slave servers. The proposed model reduces the delay for data consistency by up to 31 percent compared to that of a typical model that collates the status of all servers at one master server. The computation time is a few seconds, which is an acceptable time for network design before service launch. These results indicate that the proposed model is effective for delay-sensitive applications.

  • Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation

    Shingo YASHIKI  Chako TAKAHASHI  Koutarou SUZUKI  

     
    LETTER

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    355-358

    This paper investigates the effects of backdoor attacks on graph neural networks (GNNs) trained through simple data augmentation by modifying the edges of the graph in graph classification. The numerical results show that GNNs trained with data augmentation remain vulnerable to backdoor attacks and may even be more vulnerable to such attacks than GNNs without data augmentation.

  • BRsyn-Caps: Chinese Text Classification Using Capsule Network Based on Bert and Dependency Syntax

    Jie LUO  Chengwan HE  Hongwei LUO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    212-219

    Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.

  • Content-Adaptive Optimization Framework for Universal Deep Image Compression

    Koki TSUBOTA  Kiyoharu AIZAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/10/24
      Vol:
    E107-D No:2
      Page(s):
    201-211

    While deep image compression performs better than traditional codecs like JPEG on natural images, it faces a challenge as a learning-based approach: compression performance drastically decreases for out-of-domain images. To investigate this problem, we introduce a novel task that we call universal deep image compression, which involves compressing images in arbitrary domains, such as natural images, line drawings, and comics. Furthermore, we propose a content-adaptive optimization framework to tackle this task. This framework adapts a pre-trained compression model to each target image during testing for addressing the domain gap between pre-training and testing. For each input image, we insert adapters into the decoder of the model and optimize the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion, with the adapter parameters transmitted per image. To achieve the evaluation of the proposed universal deep compression, we constructed a benchmark dataset containing uncompressed images of four domains: natural images, line drawings, comics, and vector arts. We compare our proposed method with non-adaptive and existing adaptive compression methods, and the results show that our method outperforms them. Our code and dataset are publicly available at https://github.com/kktsubota/universal-dic.

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.

  • Robust Visual Tracking Using Hierarchical Vision Transformer with Shifted Windows Multi-Head Self-Attention

    Peng GAO  Xin-Yue ZHANG  Xiao-Li YANG  Jian-Cheng NI  Fei WANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/10/20
      Vol:
    E107-D No:1
      Page(s):
    161-164

    Despite Siamese trackers attracting much attention due to their scalability and efficiency in recent years, researchers have ignored the background appearance, which leads to their inapplicability in recognizing arbitrary target objects with various variations, especially in complex scenarios with background clutter and distractors. In this paper, we present a simple yet effective Siamese tracker, where the shifted windows multi-head self-attention is produced to learn the characteristics of a specific given target object for visual tracking. To validate the effectiveness of our proposed tracker, we use the Swin Transformer as the backbone network and introduced an auxiliary feature enhancement network. Extensive experimental results on two evaluation datasets demonstrate that the proposed tracker outperforms other baselines.

  • A CNN-Based Multi-Scale Pooling Strategy for Acoustic Scene Classification

    Rong HUANG  Yue XIE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2023/10/17
      Vol:
    E107-D No:1
      Page(s):
    153-156

    Acoustic scene classification (ASC) is a fundamental domain within the realm of artificial intelligence classification tasks. ASC-based tasks commonly employ models based on convolutional neural networks (CNNs) that utilize log-Mel spectrograms as input for gathering acoustic features. In this paper, we designed a CNN-based multi-scale pooling (MSP) strategy for ASC. The log-Mel spectrograms are utilized as the input to CNN, which is partitioned into four frequency axis segments. Furthermore, we devised four CNN channels to acquire inputs from distinct frequency ranges. The high-level features extracted from outputs in various frequency bands are integrated through frequency pyramid average pooling layers at multiple levels. Subsequently, a softmax classifier is employed to classify different scenes. Our study demonstrates that the implementation of our designed model leads to a significant enhancement in the model's performance, as evidenced by the testing of two acoustic datasets.

  • Improved Head and Data Augmentation to Reduce Artifacts at Grid Boundaries in Object Detection

    Shinji UCHINOURA  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:1
      Page(s):
    115-124

    We investigated the influence of horizontal shifts of the input images for one stage object detection method. We found that the object detector class scores drop when the target object center is at the grid boundary. Many approaches have focused on reducing the aliasing effect of down-sampling to achieve shift-invariance. However, down-sampling does not completely solve this problem at the grid boundary; it is necessary to suppress the dispersion of features in pixels close to the grid boundary into adjacent grid cells. Therefore, this paper proposes two approaches focused on the grid boundary to improve this weak point of current object detection methods. One is the Sub-Grid Feature Extraction Module, in which the sub-grid features are added to the input of the classification head. The other is Grid-Aware Data Augmentation, where augmented data are generated by the grid-level shifts and are used in training. The effectiveness of the proposed approaches is demonstrated using the COCO validation set after applying the proposed method to the FCOS architecture.

  • A Novel Double-Tail Generative Adversarial Network for Fast Photo Animation

    Gang LIU  Xin CHEN  Zhixiang GAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/09/28
      Vol:
    E107-D No:1
      Page(s):
    72-82

    Photo animation is to transform photos of real-world scenes into anime style images, which is a challenging task in AIGC (AI Generated Content). Although previous methods have achieved promising results, they often introduce noticeable artifacts or distortions. In this paper, we propose a novel double-tail generative adversarial network (DTGAN) for fast photo animation. DTGAN is the third version of the AnimeGAN series. Therefore, DTGAN is also called AnimeGANv3. The generator of DTGAN has two output tails, a support tail for outputting coarse-grained anime style images and a main tail for refining coarse-grained anime style images. In DTGAN, we propose a novel learnable normalization technique, termed as linearly adaptive denormalization (LADE), to prevent artifacts in the generated images. In order to improve the visual quality of the generated anime style images, two novel loss functions suitable for photo animation are proposed: 1) the region smoothing loss function, which is used to weaken the texture details of the generated images to achieve anime effects with abstract details; 2) the fine-grained revision loss function, which is used to eliminate artifacts and noise in the generated anime style image while preserving clear edges. Furthermore, the generator of DTGAN is a lightweight generator framework with only 1.02 million parameters in the inference phase. The proposed DTGAN can be easily end-to-end trained with unpaired training data. Extensive experiments have been conducted to qualitatively and quantitatively demonstrate that our method can produce high-quality anime style images from real-world photos and perform better than the state-of-the-art models.

  • Node-to-Set Disjoint Paths Problem in Cross-Cubes

    Rikuya SASAKI  Hiroyuki ICHIDA  Htoo Htoo Sandi KYAW  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/10/06
      Vol:
    E107-D No:1
      Page(s):
    53-59

    The increasing demand for high-performance computing in recent years has led to active research on massively parallel systems. The interconnection network in a massively parallel system interconnects hundreds of thousands of processing elements so that they can process large tasks while communicating among others. By regarding the processing elements as nodes and the links between processing elements as edges, respectively, we can discuss various problems of interconnection networks in the framework of the graph theory. Many topologies have been proposed for interconnection networks of massively parallel systems. The hypercube is a very popular topology and it has many variants. The cross-cube is such a topology, which can be obtained by adding one extra edge to each node of the hypercube. The cross-cube reduces the diameter of the hypercube, and allows cycles of odd lengths. Therefore, we focus on the cross-cube and propose an algorithm that constructs disjoint paths from a node to a set of nodes. We give a proof of correctness of the algorithm. Also, we show that the time complexity and the maximum path length of the algorithm are O(n3 log n) and 2n - 3, respectively. Moreover, we estimate that the average execution time of the algorithm is O(n2) based on a computer experiment.

  • CQTXNet: A Modified Xception Network with Attention Modules for Cover Song Identification

    Jinsoo SEO  Junghyun KIM  Hyemi KIM  

     
    LETTER

      Pubricized:
    2023/10/02
      Vol:
    E107-D No:1
      Page(s):
    49-52

    Song-level feature summarization is fundamental for the browsing, retrieval, and indexing of digital music archives. This study proposes a deep neural network model, CQTXNet, for extracting song-level feature summary for cover song identification. CQTXNet incorporates depth-wise separable convolution, residual network connections, and attention models to extend previous approaches. An experimental evaluation of the proposed CQTXNet was performed on two publicly available cover song datasets by varying the number of network layers and the type of attention modules.

  • Frameworks for Privacy-Preserving Federated Learning

    Le Trieu PHONG  Tran Thi PHUONG  Lihua WANG  Seiichi OZAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-D No:1
      Page(s):
    2-12

    In this paper, we explore privacy-preserving techniques in federated learning, including those can be used with both neural networks and decision trees. We begin by identifying how information can be leaked in federated learning, after which we present methods to address this issue by introducing two privacy-preserving frameworks that encompass many existing privacy-preserving federated learning (PPFL) systems. Through experiments with publicly available financial, medical, and Internet of Things datasets, we demonstrate the effectiveness of privacy-preserving federated learning and its potential to develop highly accurate, secure, and privacy-preserving machine learning systems in real-world scenarios. The findings highlight the importance of considering privacy in the design and implementation of federated learning systems and suggest that privacy-preserving techniques are essential in enabling the development of effective and practical machine learning systems.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • MSLT: A Scalable Solution for Blockchain Network Transport Layer Based on Multi-Scale Node Management Open Access

    Longle CHENG  Xiaofeng LI  Haibo TAN  He ZHAO  Bin YU  

     
    PAPER-Network

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    185-196

    Blockchain systems rely on peer-to-peer (P2P) overlay networks to propagate transactions and blocks. The node management of P2P networks affects the overall performance and reliability of the system. The traditional structure is based on random connectivity, which is known to be an inefficient operation. Therefore, we propose MSLT, a multiscale blockchain P2P network node management method to improve transaction performance. This approach involves configuring the network to operate at multiple scales, where blockchain nodes are grouped into different ranges at each scale. To minimize redundancy and manage traffic efficiently, neighboring nodes are selected from each range based on a predetermined set of rules. Additionally, a node updating method is implemented to improve the reliability of the network. Compared with existing transmission models in efficiency, utilization, and maximum transaction throughput, the MSLT node management model improves the data transmission performance.

  • A Survey of Information-Centric Networking: The Quest for Innovation Open Access

    Hitoshi ASAEDA  Kazuhisa MATSUZONO  Yusaku HAYAMIZU  Htet Htet HLAING  Atsushi OOKA  

     
    INVITED PAPER-Network

      Pubricized:
    2023/08/22
      Vol:
    E107-B No:1
      Page(s):
    139-153

    Information-Centric Networking (ICN) is an innovative technology that provides low-loss, low-latency, high-throughput, and high-reliability communications for diversified and advanced services and applications. In this article, we present a technical survey of ICN functionalities such as in-network caching, routing, transport, and security mechanisms, as well as recent research findings. We focus on CCNx, which is a prominent ICN protocol whose message types are defined by the Internet Research Task Force. To facilitate the development of functional code and encourage application deployment, we introduce an open-source software platform called Cefore that facilitates CCNx-based communications. Cefore consists of networking components such as packet forwarding and in-network caching daemons, and it provides APIs and a Python wrapper program that enables users to easily develop CCNx applications for on Cefore. We introduce a Mininet-based Cefore emulator and lightweight Docker containers for running CCNx experiments on Cefore. In addition to exploring ICN features and implementations, we also consider promising research directions for further innovation.

21-40hit(4507hit)