The search functionality is under construction.

Keyword Search Result

[Keyword] oscillators(38hit)

1-20hit(38hit)

  • Design and Analysis of Piecewise Nonlinear Oscillators with Circular-Type Limit Cycles

    Tatsuya KAI  Koshi MAEHARA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2023/03/20
      Vol:
    E106-A No:9
      Page(s):
    1234-1240

    This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.

  • Enhanced Oscillation Frequency in Series-Connected Resonant-Tunneling Diode-Oscillator Lattice Loop

    Koichi NARAHARA  Koichi MAEZAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/12/22
      Vol:
    E106-C No:7
      Page(s):
    395-404

    Series-connection of resonant-tunneling diodes (RTDs) has been considered to be efficient in upgrading the output power when it is introduced to oscillator architecture. This work is for clarifying the same architecture also contributes to increasing oscillation frequency because the device parasitic capacitance is reduced M times for M series-connected RTD oscillator. Although this mechanism is expected to be universal, we restrict the discussion to the recently proposed multiphase oscillator utilizing an RTD oscillator lattice loop. After explaining the operation principle, we evaluate how the oscillation frequency depends on the number of series-connected RTDs through full-wave calculations. In addition, the essential dynamics were validated experimentally in breadboarded multiphase oscillators using Esaki diodes in place of RTDs.

  • Impedance Matching in High-Power Resonant-Tunneling-Diode Terahertz Oscillators Integrated with Rectangular-Cavity Resonator

    Feifan HAN  Kazunori KOBAYASHI  Safumi SUZUKI  Hiroki TANAKA  Hidenari FUJIKATA  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/01/15
      Vol:
    E104-C No:8
      Page(s):
    398-402

    This paper theoretically presents that a terahertz (THz) oscillator using a resonant tunneling diode (RTD) and a rectangular cavity, which has previously been proposed, can radiate high output power by the impedance matching between RTD and load through metal-insulator-metal (MIM) capacitors. Based on an established equivalent-circuit model, an equation for output power has been deduced. By changing MIM capacitors, a matching point can be derived for various sizes of rectangular-cavity resonator. Simulation results show that high output power is possible by long cavity. For example, a high output power of 5 mW is expected at 1 THz.

  • Transition Dynamics of Multistable Tunnel-Diode Oscillator Used for Effective Amplitude Modulation

    Koichi NARAHARA  Koichi MAEZAWA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/07/14
      Vol:
    E104-C No:1
      Page(s):
    40-43

    The transition dynamics of a multistable tunnel-diode oscillator is characterized for modulating amplitude of outputted oscillatory signal. The base oscillator possesses fixed-point and limit-cycle stable points for a unique bias voltage. Switching these two stable points by external signal can render an efficient method for modulation of output amplitude. The time required for state transition is expected to be dominated by the aftereffect of the limiting point. However, it is found that its influence decreases exponentially with respect to the amplitude of external signal. Herein, we first describe numerically the pulse generation scheme with the transition dynamics of the oscillator and then validate it with several time-domain measurements using a test circuit.

  • Frequency Divider Using One-Dimensional Tunnel-Diode Oscillator Lattice Systems

    Koichi NARAHARA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2019/06/25
      Vol:
    E102-C No:12
      Page(s):
    845-848

    A one-dimensional lattice of tunnel-diode oscillators is investigated for potential high-speed frequency divider. In the evolution of the investigated lattice, the high-frequency oscillation dominates over the low-frequency oscillation. When a base oscillator is connected at the end, and generates oscillatory signals with a frequency higher than that of the synchronous lattice oscillation, the oscillator output begins to move in the lattice. This one-way property guarantees that the oscillation dynamics of the lattice have only slight influence on the oscillator motion. Moreover, counter-moving pulses in the lattice exhibit pair annihilation through head-on collisions. These lattice properties enable an efficient frequency division method. Herein, the operating principles of the frequency divider are described, along with a numerical validation.

  • Composite Right-/Left-Handed Transmission Line Stub Resonators for X-Band Low Phase-Noise Oscillators

    Shinichi TANAKA  Hiroki NISHIZAWA  Kei TAKATA  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    734-743

    This paper describes a novel composite right-/left-handed (CRLH) transmission line (TL) stub resonator for X-band low phase-noise oscillator application. The bandpass filter type resonator composed only of microstrip components exhibits unloaded-Q exceeding that of microstrip-line resonators by engineering the dispersion relation for the CRLH TL. Two different types of stub resonator using identical and non-identical unit-cells are compared. Although the latter type was found to be superior to the former in terms of spurious frequency responses and the circuit size, care was taken to prevent the parasitic inductances distributed in the interdigital capacitors from impeding the Q-factor control capability of the resonator. The stub resonator thus optimized was applied to an 8.8-GHz SiGe HBT oscillator, which achieved a phase-noise of -134dBc/Hz at 1-MHz offset despite the modest dielectric loss tangent of the PCB laminate used as the substrate of the circuit.

  • Oscillation Model for Describing Network Dynamics Caused by Asymmetric Node Interaction Open Access

    Masaki AIDA  Chisa TAKANO  Masayuki MURATA  

     
    POSITION PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/03
      Vol:
    E101-B No:1
      Page(s):
    123-136

    This paper proposes an oscillation model for analyzing the dynamics of activity propagation across social media networks. In order to analyze such dynamics, we generally need to model asymmetric interactions between nodes. In matrix-based network models, asymmetric interaction is frequently modeled by a directed graph expressed as an asymmetric matrix. Unfortunately, the dynamics of an asymmetric matrix-based model is difficult to analyze. This paper, first of all, discusses a symmetric matrix-based model that can describe some types of link asymmetry, and then proposes an oscillation model on networks. Next, the proposed oscillation model is generalized to arbitrary link asymmetry. We describe the outlines of four important research topics derived from the proposed oscillation model. First, we show that the oscillation energy of each node gives a generalized notion of node centrality. Second, we introduce a framework that uses resonance to estimate the natural frequency of networks. Natural frequency is important information for recognizing network structure. Third, by generalizing the oscillation model on directed networks, we create a dynamical model that can describe flaming on social media networks. Finally, we show the fundamental equation of oscillation on networks, which provides an important breakthrough for generalizing the spectral graph theory applicable to directed graphs.

  • A Priority Control Method for Media Access Control Method SP-MAC to Improve Throughput of Bidirectional Flows

    Ryoma ANDO  Ryo HAMAMOTO  Hiroyasu OBATA  Chisa TAKANO  Kenji ISHIDA  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    984-993

    In IEEE802.11 Wireless Local Area Networks (WLANs), frame collisions occur drastically when the number of wireless terminals connecting to the same Access Point (AP) increases. It causes the decrease of the total throughput of all terminals. To solve this issue, the authors have proposed a new media access control (MAC) method, Synchronized Phase MAC (SP-MAC), based on the synchronization phenomena of coupled oscillators. We have addressed the network environment in which only uplink flows from the wireless terminal to an AP exist. However, it is necessary to take into consideration of the real network environment in which uplink and downlink flows are generated simultaneously. If many bidirectional data flows exist in the WLAN, the AP receives many frames from both uplink and downlink by collision avoidance of SP-MAC. As a result, the total throughput decreases by buffer overflow in the AP. In this paper, we propose a priority control method based on SP-MAC for avoiding the buffer overflow in the AP under the bidirectional environment. Also, we show that the proposed method has an effect for improving buffer overflow in the AP and total throughput by the simulation.

  • Miniaturization of Double Stub Resonators Using Lumped-Element Capacitors for MMIC Applications

    Shinichi TANAKA  Takao KATAYOSE  Hiroki NISHIZAWA  Ken'ichi HOSOYA  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    830-836

    We present a design method for miniaturizing double stub resonators that are potentially very useful for wide range of applications but have limited usage for MMICs due to their large footprint. The analytical design model, which we introduce in this paper, allows for determining the capacitances needed to achieve the targeted shrinking ratio while maintaining the original loaded-Q before miniaturization. To verify the model, 18-GHz stub resonators that are around 40% of the original sizes were designed and fabricated in GaAs MMIC technology. The effectiveness of the proposed technique is also demonstrated by a 9-GHz low phase-noise oscillator using the miniaturized resonator.

  • SP-MAC: A Media Access Control Method Based on the Synchronization Phenomena of Coupled Oscillators over WLAN

    Hiroyasu OBATA  Ryo HAMAMOTO  Chisa TAKANO  Kenji ISHIDA  

     
    PAPER-Wireless System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2060-2070

    Wireless local area networks (LANs) based on the IEEE802.11 standard usually use carrier sense multiple access with collision avoidance (CSMA/CA) for media access control. However, in CSMA/CA, if the number of wireless terminals increases, the back-off time derived by the initial contention window (CW) tends to conflict among wireless terminals. Consequently, a data frame collision often occurs, which sometimes causes the degradation of the total throughput in the transport layer protocols. In this study, to improve the total throughput, we propose a new media access control method, SP-MAC, which is based on the synchronization phenomena of coupled oscillators. Moreover, this study shows that SP-MAC drastically decreases the data frame collision probability and improves the total throughput when compared with the original CSMA/CA method.

  • A Near-Threshold Cell-Based All-Digital PLL with Hierarchical Band-Selection G-DCO for Fast Lock-In and Low-Power Applications

    Chia-Wen CHANG  Yuan-Hua CHU  Shyh-Jye JOU  

     
    PAPER-Integrated Electronics

      Vol:
    E98-C No:8
      Page(s):
    882-891

    This paper presents a cell-based all-digital phase-locked loop (ADPLL) with hierarchical gated digitally controlled oscillator (G-DCO) for low voltage operation, wide frequency range as well as low-power consumption. In addition, a new time-domain hierarchical frequency estimation algorithm (HFEA) for frequency acquisition is proposed to estimate the output frequency in 1.5MF (MF = 3 in this paper) cycles and this fast lock-in time is suitable to the dynamic voltage frequency scaling (DVFS) systems. A hierarchical G-DCO is proposed to work at low supply voltage to reduce the power consumption and at the same time to achieve wide frequency range and precise frequency resolution. The core area of the proposed ADPLL is 0.02635 mm2. In near-threshold region (VDD = 0.36 V), the proposed ADPLL only dissipates 68.2 µW and has a rms period jitter of 1.25% UI at 60 MHz output clock frequency. Under 0.5 V VDD operation, the proposed ADPLL dissipates 404.2 µW at 400 MHz. The fast lock-in time of 4.489 µs and the low jitter performance below 0.5% UI at 400 MHz output clock frequency in the proposed ADPLL are suitable in event-driven or DVFS applications.

  • Natural Synchronization of Wireless Sensor Networks by Noise-Induced Phase Synchronization Phenomenon Open Access

    Hiroyuki YASUDA  Mikio HASEGAWA  

     
    PAPER

      Vol:
    E96-B No:11
      Page(s):
    2749-2755

    We propose a natural synchronization scheme for wireless uncoupled devices, without any signal exchange among them. Our proposed scheme only uses natural environmental fluctuations, such as the temperature or humidity of the air, the environmental sounds, and so on, for the synchronization of the uncoupled devices. This proposed synchronization is realized based on the noise-induced synchronization phenomenon, uncoupled nonlinear oscillators synchronize with each other only by adding identical common noises to each of them. Based on the theory of this phenomenon, the oscillators can also be synchronized by noise sequences, which are not perfectly identical signals. Since the environmental natural fluctuations collected at neighboring locations are similar to each other and cross-correlation becomes high, our proposed scheme enabling synchronization only by natural environmental fluctuations can be realized. As an application of this proposed synchronization, we introduce wireless sensor networks, for which synchronization is important for reducing power consumption by intermittent data transmission. We collect environmental fluctuations using the wireless sensor network devices. Our results show that the wireless sensor network devices can be synchronized only by the independently collected natural signals, such as temperature and humidity, at each wireless sensor device.

  • Silicon Based Millimeter Wave and THz ICs Open Access

    Jixin CHEN  Wei HONG  Hongjun TANG  Pinpin YAN  Li ZHANG  Guangqi YANG  Debin HOU  Ke WU  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1134-1140

    In this paper, the research advances in silicon based millimeter wave and THz ICs in the State Key Laboratory of Millimeter Waves is reviewed, which consists of millimeter wave amplifiers, mixers, oscillators at Q, V and W and D band based on CMOS technology, and several research approaches of THz passive ICs including cavity and filter structures using SIW-like (Substrate Integrated Waveguide-like) guided wave structures based on CMOS and MEMs process. The design and performance of these components and devices are presented.

  • More on the Impulse Sensitivity Functions of CMOS Differential LC Oscillators

    Shey-Shi LU  Hsiao-Chin CHEN  Shih-An YU  

     
    PAPER-Circuit Theory

      Vol:
    E94-A No:8
      Page(s):
    1671-1681

    The effective ISFs of differential LC oscillators are derived under the assumption that the drain-to-source current is linearly dependent on the gate-to-source voltage for transistors operated in saturation. Moreover, a new interpretation of phase noise is given by examining the real vector diagram of the carrier signal, upon which the noise voltage induced by the impulse noise current is superimposed. The distinct feature of our vector diagram lies in that the noise voltage is always parallel with the horizontal axis. From the Fourier transformations of the derived effective ISFs, the phase noise of differential LC oscillators can be formulated with physical meanings in the frequency domain. The proposed theory can well describe the translation of the noise spectra when the noises from the LC-tank, the switching transistors, and the tail current source are converted into the phase noise. Theoretical predictions from our formulas agree well with the simulation results.

  • A Time Variant Analysis of Phase Noise in Differential Cross-Coupled LC Oscillators

    Jinhua LIU  Guican CHEN  Hong ZHANG  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2433-2440

    This paper presents a systemic analysis for phase noise performances of differential cross-coupled LC oscillators by using Hajimiri and Lee's model. The effective impulse sensitivity functions (ISF) for each noise source in the oscillator is mathematically derived. According to these effective ISFs, the phase noise contribution from each device is figured out, and phase noise contributions from the device noise in the vicinity of the integer multiples of the resonant frequency, weighted by the Fourier coefficients of the effective ISF, are also calculated. The explicit closed-form expression for phase noise of the oscillator is definitely determined. The validity of the phase noise analysis is verified by good simulation agreement.

  • A Third Order Harmonic Oscillator Based on Coupled Resonant Tunneling Diode Pair Oscillators

    Koichi MAEZAWA  Takashi OHE  Koji KASAHARA  Masayuki MORI  

     
    PAPER-THz Electronics

      Vol:
    E93-C No:8
      Page(s):
    1290-1294

    A third order harmonic oscillator has been proposed based on the resonant tunneling diode pair oscillators. This oscillator has significant advantages, good stability of the oscillation frequency against the load impedance change together with capability to output higher frequencies. Proper circuit operation has been demonstrated using circuit simulations. It has been also shown that the output frequency is stable against the load impedance change.

  • Pulse Wave Propagation in a Large Number of Coupled Bistable Oscillators

    Kuniyasu SHIMIZU  Tetsuro ENDO  Daishin UEYAMA  

     
    LETTER

      Vol:
    E91-A No:9
      Page(s):
    2540-2545

    A simple model of inductor-coupled bistable oscillators is shown to exhibit pulse wave propagation. We demonstrate numerically that there exists a pulse wave which propagates with a constant speed in comparatively wide parameter region. In particular, the propagating pulse wave can be observed in non-uniform lattice with noise. The propagating pulse wave can be observed for comparatively strong coupling case, and for weak coupling case no propagating pulse wave can be observed (propagation failure). We also demonstrate various interaction phenomena between two pulses.

  • Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    Akira UTAGAWA  Tetsuya ASAI  Tetsuya HIROSE  Yoshihito AMEMIYA  

     
    PAPER-Electronic Circuits and Systems

      Vol:
    E91-A No:9
      Page(s):
    2475-2481

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1],[2]. We regard neural oscillators as independent clock sources on LSIs; i.e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (< 1 GHz) by modifying the original neuron model to a new model that is suitable for CMOS implementation with 0.25-µm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  • Spatial Sensitivity of Capacitors in Distributed Resonators and Its Application to Fine and Wide Frequency Tuning Digital Controlled Oscillators

    Win CHAIVIPAS  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    918-927

    Analysis of resonance frequency in shorted transmission lines with inserted capacitor has been made. The analysis shows a resonance frequency dependence on capacitance position on a shorted transmission line. Two analysis methods are presented to predict the resonance frequency and understand how the inserted capacitor affects the resonance frequency of the shorted transmission line. Using this knowledge we propose a new structure for digital controlled oscillators utilizing the capacitance's sensitivity dependence on position of the shorted transmission line to increase the frequency resolution. A 9 GHz transmission line based digital controlled oscillator was designed and fabricated as a proof of concept. Measured results show that more than 100 times frequency step resolution increase is possible utilizing the same tuning capacitor size located at different points on the transmission line.

  • 18-GHz Clock Distribution Using a Coupled VCO Array

    Takayuki SHIBASAKI  Hirotaka TAMURA  Kouichi KANDA  Hisakatsu YAMAGUCHI  Junji OGAWA  Tadahiro KURODA  

     
    PAPER-Analog and Communications

      Vol:
    E90-C No:4
      Page(s):
    811-822

    This paper describes an 18-GHz coupled VCO array for low jitter and low phase deviation clock distribution. To reduce the skew, jitter and power consumption associated with clock distribution, the clock is generated by a one-dimensional VCO array in which the oscillating nodes of adjacent VCOs are directly connected with wires. The effects of the wire length and number of unit VCOs in the array are discussed. Both 4-unit and a 2-unit VCO arrays for delivering a clock signal to a 16:1 multiplexor were designed and fabricated in a 90-nm CMOS process. The frequency range of the 4-unit VCO array was 16 GHz to 18.5 GHz while each unit VCO consumed 2 mA.

1-20hit(38hit)