The search functionality is under construction.

Keyword Search Result

[Keyword] technology(204hit)

1-20hit(204hit)

  • Novel Constructions of Complementary Sets of Sequences of Lengths Non-Power-of-Two Open Access

    Longye WANG  Houshan LIU  Xiaoli ZENG  Qingping YU  

     
    LETTER-Coding Theory

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:7
      Page(s):
    1053-1057

    This letter presented several new constructions of complementary sets (CSs) with flexible sequence lengths using matrix transformations. The constructed CSs of size 4 have different lengths, namely N + L and 2N + L, where N and L are the lengths for which complementary pairs exist. Also, presented CSs of size 8 have lengths N + P, P + Q and 2P + Q, where N is length of complementary pairs, P and Q are lengths of CSs of size 4 exist. The achieved designs can be easily extended to a set size of 2n+2 by recursive method. The proposed constructions generalize some previously reported constructions along with generating CSs under fewer constraints.

  • Automated Labeling of Entities in CVE Vulnerability Descriptions with Natural Language Processing Open Access

    Kensuke SUMOTO  Kenta KANAKOGI  Hironori WASHIZAKI  Naohiko TSUDA  Nobukazu YOSHIOKA  Yoshiaki FUKAZAWA  Hideyuki KANUKA  

     
    PAPER

      Pubricized:
    2024/02/09
      Vol:
    E107-D No:5
      Page(s):
    674-682

    Security-related issues have become more significant due to the proliferation of IT. Collating security-related information in a database improves security. For example, Common Vulnerabilities and Exposures (CVE) is a security knowledge repository containing descriptions of vulnerabilities about software or source code. Although the descriptions include various entities, there is not a uniform entity structure, making security analysis difficult using individual entities. Developing a consistent entity structure will enhance the security field. Herein we propose a method to automatically label select entities from CVE descriptions by applying the Named Entity Recognition (NER) technique. We manually labeled 3287 CVE descriptions and conducted experiments using a machine learning model called BERT to compare the proposed method to labeling with regular expressions. Machine learning using the proposed method significantly improves the labeling accuracy. It has an f1 score of about 0.93, precision of about 0.91, and recall of about 0.95, demonstrating that our method has potential to automatically label select entities from CVE descriptions.

  • Technology Remapping Approach Using Multi-Gate Reconfigurable Cells for Post-Mask Functional ECO

    Tomohiro NISHIGUCHI  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/10/10
      Vol:
    E107-A No:3
      Page(s):
    592-599

    This paper proposes multi-gate reconfigurable (RECON) cells and a technology remapping approach using them as spare cells for post-mask functional engineering change orders (ECOs). With the rapid increase in circuit complexity, ECOs often occur in the post-mask stage of LSI designs. To deal with post-mask ECOs at a low cost, only the metal layers are redesigned by making functional changes using spare cells. For this purpose, 2T/4T/6T-RECON cells were proposed as reconfigurable spare cells. However, conventional RECON cells are used to implement single functions, which may result in unused transistors in the cells. In addition, the number of 2T/4T/6T-RECON spare cells used for post-mask ECOs varies greatly depending on the circuit to be implemented and the type of ECO that occurs. Therefore, functional ECOs may fail due to a lack of certain types of RECON cells, even if other types of RECON cells remain. To solve this problem, we propose multi-gate RECON cells that implement multiple functions in a single RECON cell while retaining the layouts of conventional 4T/6T-RECON base cells, and a technology remapping approach using them. The proposed approach not only reduces the number of used spare cells for modifications but also allows the flexible use of spare cells to fix them with less increase in wire length and delay. Experimental results have confirmed that the functional ECO success ratio is increased by 4.8pt on average and the total number of used spare cells is reduced by 5.6% on average. It has also been confirmed that the increase in wire length is reduced by 17.4% on average and the decrease in slack is suppressed by 21.6% on average.

  • Design of a Capacitive Coupler for Underwater Wireless Power Transfer Focused on the Landing Direction of a Drone

    Yasumasa NAKA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    66-75

    This paper presents the design of a capacitive coupler for underwater wireless power transfer focused on the landing direction of a drone. The main design feature is the relative position of power feeding/receiving points on the coupler electrodes, which depends on the landing direction of the drone. First, the maximum power transfer efficiencies of coupled lines with different feeding positions are derived in a uniform dielectric environment, such as that realized underwater. As a result, these are formulated by the coupling coefficient of the capacitive coupler, the unloaded qualify factor of dielectrics, and hyperbolic functions with complex propagation constants. The hyperbolic functions vary depending on the relative positions and whether these are identical or opposite couplers, and the efficiencies of each coupler depend on the type of water, such as seawater and tap water. The design method was demonstrated and achieved the highest efficiencies of 95.2%, 91.5%, and 85.3% in tap water at transfer distances of 20, 50, and 100 mm, respectively.

  • Capacitive Wireless Power Transfer System with Misalignment Tolerance in Flowing Freshwater Environments

    Yasumasa NAKA  Akihiko ISHIWATA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/08/01
      Vol:
    E107-C No:2
      Page(s):
    47-56

    The misalignment of a coupler is a significant issue for capacitive wireless power transfer (WPT). This paper presents a capacitive WPT system specifically designed for underwater drones operating in flowing freshwater environments. The primary design features include a capacitive coupler with an opposite relative position between feeding and receiving points on the coupler electrode, two phase compensation circuits, and a load-independent inverter. A stable and energy-efficient power transmission is achieved by maintaining a 90° phase difference on the coupler electrode in dielectrics with a large unloaded quality factor (Q factor), such as in freshwater. Although a 622-mm coupler electrode is required at 13.56MHz, the phase compensation circuits can reduce to 250mm as one example, which is mountable to small underwater drones. Furthermore, the electricity waste is automatically reduced using the constant-current (CC) output inverter in the event of misalignment where efficiency drops occur. Finally, their functions are simulated and demonstrated at various receiver positions and transfer distances in tap water.

  • Evaluating Energy Consumption of Internet Services Open Access

    Leif Katsuo OXENLØWE  Quentin SAUDAN  Jasper RIEBESEHL  Mujtaba ZAHIDY  Smaranika SWAIN  

     
    INVITED PAPER

      Pubricized:
    2023/06/15
      Vol:
    E106-B No:11
      Page(s):
    1036-1043

    This paper summarizes recent reports on the internet's energy consumption and the internet's benefits on climate actions. It discusses energy-efficiency and the need for a common standard for evaluating the climate impact of future communication technologies and suggests a model that can be adapted to different internet applications such as streaming, online reading and downloading. The two main approaches today are based on how much data is transmitted or how much time the data is under way. The paper concludes that there is a need for a standardized method to estimate energy consumption and CO2 emission related to internet services. This standard should include a method for energy-optimizing future networks, where every Wh will be scrutinized.

  • Mg Ion Plasma Generated by a High Magnetic Field in a Microwave Resonator

    Satoshi FUJII  Jun FUKUSHIMA  Hirotsugu TAKIZAWA  

     
    PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    707-712

    The generation and reduction reaction of magnesium plasma were studied using a cylindrical transverse magnetic-mode applicator in magnetic and electric field modes. By heating Mg powder using the magnetic field mode, plasma was generated with the evaporation of Mg and stably sustained. When the Mg plasma sample was introduced into the reaction zone and exposed to microwave and lamp heating, a reduction reaction of scandium oxide also occurred. The results of this study provide prospects for the development of a larger microwave refining system.

  • iLEDGER: A Lightweight Blockchain Framework with New Consensus Method for IoT Applications

    Veeramani KARTHIKA  Suresh JAGANATHAN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/06
      Vol:
    E106-A No:9
      Page(s):
    1251-1262

    Considering the growth of the IoT network, there is a demand for a decentralized solution. Incorporating the blockchain technology will eliminate the challenges faced in centralized solutions, such as i) high infrastructure, ii) maintenance cost, iii) lack of transparency, iv) privacy, and v) data tampering. Blockchain-based IoT network allows businesses to access and share the IoT data within their organization without a central authority. Data in the blockchain are stored as blocks, which should be validated and added to the chain, for this consensus mechanism plays a significant role. However, existing methods are not designed for IoT applications and lack features like i) decentralization, ii) scalability, iii) throughput, iv) faster convergence, and v) network overhead. Moreover, current blockchain frameworks failed to support resource-constrained IoT applications. In this paper, we proposed a new consensus method (WoG) and a lightweight blockchain framework (iLEDGER), mainly for resource-constrained IoT applications in a permissioned environment. The proposed work is tested in an application that tracks the assets using IoT devices (Raspberry Pi 4 and RFID). Furthermore, the proposed consensus method is analyzed against benign failures, and performance parameters such as CPU usage, memory usage, throughput, transaction execution time, and block generation time are compared with state-of-the-art methods.

  • Proof of Concept of Optimum Radio Access Technology Selection Scheme with Radars for Millimeter-Wave Networks Open Access

    Mitsuru UESUGI  Yoshiaki SHINAGAWA  Kazuhiro KOSAKA  Toru OKADA  Takeo UETA  Kosuke ONO  

     
    PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:9
      Page(s):
    778-785

    With the rapid increase in the amount of data communication in 5G networks, there is a strong demand to reduce the power of the entire network, so the use of highly power-efficient millimeter-wave (mm-wave) networks is being considered. However, while mm-wave communication has high power efficiency, it has strong straightness, so it is difficult to secure stable communication in an environment with blocking. Especially when considering use cases such as autonomous driving, continuous communication is required when transmitting streaming data such as moving images taken by vehicles, it is necessary to compensate the blocking problem. For this reason, the authors examined an optimum radio access technology (RAT) selection scheme which selects mm-wave communication when mm-wave can be used and select wide-area macro-communication when mm-wave may be blocked. In addition, the authors implemented the scheme on a prototype device and conducted field tests and confirmed that mm-wave communication and macro communication were switched at an appropriate timing.

  • Design of Enclosing Signing Keys by All Issuers in Distributed Public Key Certificate-Issuing Infrastructure

    Shohei KAKEI  Hiroaki SEKO  Yoshiaki SHIRAISHI  Shoichi SAITO  

     
    LETTER

      Pubricized:
    2023/05/25
      Vol:
    E106-D No:9
      Page(s):
    1495-1498

    This paper first takes IoT as an example to provide the motivation for eliminating the single point of trust (SPOT) in a CA-based private PKI. It then describes a distributed public key certificate-issuing infrastructure that eliminates the SPOT and its limitation derived from generating signing keys. Finally, it proposes a method to address its limitation by all certificate issuers.

  • BlockCSDN: Towards Blockchain-Based Collaborative Intrusion Detection in Software Defined Networking

    Wenjuan LI  Yu WANG  Weizhi MENG  Jin LI  Chunhua SU  

     
    PAPER

      Pubricized:
    2021/09/16
      Vol:
    E105-D No:2
      Page(s):
    272-279

    To safeguard critical services and assets in a distributed environment, collaborative intrusion detection systems (CIDSs) are usually adopted to share necessary data and information among various nodes, and enhance the detection capability. For simplifying the network management, software defined networking (SDN) is an emerging platform that decouples the controller plane from the data plane. Intuitively, SDN can help lighten the management complexity in CIDSs, and a CIDS can protect the security of SDN. In practical implementation, trust management is an important approach to help identify insider attacks (or malicious nodes) in CIDSs, but the challenge is how to ensure the data integrity when evaluating the reputation of a node. Motivated by the recent development of blockchain technology, in this work, we design BlockCSDN — a framework of blockchain-based collaborative intrusion detection in SDN, and take the challenge-based CIDS as a study. The experimental results under both external and internal attacks indicate that using blockchain technology can benefit the robustness and security of CIDSs and SDN.

  • Comprehensive Survey of Research on Emerging Communication Technologies from ICETC2020 Open Access

    Takuji TACHIBANA  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-B No:2
      Page(s):
    98-115

    The 2020 International Conference on Emerging Technologies for Communications (ICETC2020) was held online on December 2nd—4th, 2020, and 213 research papers were accepted and presented in each session. It is expected that the accepted papers will contribute to the development and extension of research in multiple research areas. In this survey paper, all accepted research papers are classified into four research areas: Physical & Fundamental, Communications, Network, and Information Technology & Application, and then research papers are classified into each research topic. For each research area and topic, this survey paper briefly introduces the presented technologies and methods.

  • Formal Modeling and Verification of Concurrent FSMs: Case Study on Event-Based Cooperative Transport Robots

    Yoshinao ISOBE  Nobuhiko MIYAMOTO  Noriaki ANDO  Yutaka OIWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1515-1532

    In this paper, we demonstrate that a formal approach is effective for improving reliability of cooperative robot designs, where the control logics are expressed in concurrent FSMs (Finite State Machines), especially in accordance with the standard FSM4RTC (FSM for Robotic Technology Components), by a case study of cooperative transport robots. In the case study, FSMs are modeled in the formal specification language CSP (Communicating Sequential Processes) and checked by the model-checking tool FDR, where we show techniques for modeling and verification of cooperative robots implemented with the help of the RTM (Robotic Technology Middleware).

  • Research & Development of the Advanced Dynamic Spectrum Sharing System between Different Radio Services Open Access

    Hiroyuki SHINBO  Kousuke YAMAZAKI  Yoji KISHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1198-1206

    To achieve highly efficient spectrum usage, dynamic sharing of scarce spectrum resources has recently become the subject of intense discussion. The technologies of dynamic spectrum sharing (DSS) have already been adopted or are scheduled to be adopted in a number of countries, and Japan is no exception. The authors and organizations collaborating in the research and development project being undertaken in Japan have studied a novel DSS system positioned between the fifth-generation mobile communication system (5G system) and different incumbent radio systems. Our DSS system has three characteristics. (1) It detects dynamically unused sharable spectrums (USSs) of incumbent radio systems for the space axis by using novel propagation models and estimation of the transmitting location with radio sensor information. (2) It manages USSs for the time axis by interference calculation with propagation parameters, fair assignment and future usage of USSs. (3) It utilizes USSs for the spectrum axis by using methods that decrease interference for lower separation distances. In this paper, we present an overview and the technologies of our DSS system and its applications in Japan.

  • A Study on Extreme Wideband 6G Radio Access Technologies for Achieving 100Gbps Data Rate in Higher Frequency Bands Open Access

    Satoshi SUYAMA  Tatsuki OKUYAMA  Yoshihisa KISHIYAMA  Satoshi NAGATA  Takahiro ASAI  

     
    INVITED PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    992-999

    In sixth-generation (6G) mobile communication system, it is expected that extreme high data rate communication with a peak data rate over 100Gbps should be provided by exploiting higher frequency bands in addition to millimeter-wave bands such as 28GHz. The higher frequency bands are assumed to be millimeter wave and terahertz wave where the extreme wider bandwidth is available compared with 5G, and hence 6G needs to promote research and development to exploit so-called terahertz wave targeting the frequency from 100GHz to 300GHz. In the terahertz wave, there are fundamental issues that rectilinearity and pathloss are higher than those in the 28GHz band. In order to solve these issues, it is very important to clarify channel characteristics of the terahertz wave and establish a channel model, to advance 6G radio access technologies suitable for the terahertz wave based on the channel model, and to develop radio-frequency device technologies for such higher frequency bands. This paper introduces a direction of studies on 6G radio access technologies to explore the higher frequency bands and technical issues on the device technologies, and then basic computer simulations in 100Gbps transmission using 100GHz band clarify a potential of extreme high data rate over 100Gbps.

  • Base Station Cooperation Technologies Using 28GHz-Band Digital Beamforming in High-Mobility Environments Open Access

    Tatsuki OKUYAMA  Nobuhide NONAKA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1009-1016

    The fifth-generation (5G) mobile communications system initially introduced massive multiple-input multiple-output (M-MIMO) with analog beamforming (BF) to compensate for the larger path-loss in millimeter-wave (mmW) bands. To solve a coverage issue and support high mobility of the mmW bands, base station (BS) cooperation technologies have been investigated in high-mobility environments. However, previous works assume one mobile station (MS) scenario and analog BF that does not suppress interference among MSs. In order to improve system performance in the mmW bands, fully digital BF that includes digital precoding should be employed to suppress the interference even when MSs travel in high mobility. This paper proposes two mmW BS cooperation technologies that are inter-baseband unit (inter-BBU) and intra-BBU cooperation for the fully digital BF. The inter-BBU cooperation exploits two M-MIMO antennas in two BBUs connected to one central unit by limited-bandwidth fronthaul, and the intra-BBU cooperates two M-MIMO antennas connected to one BBU with Doppler frequency shift compensation. This paper verifies effectiveness of the BS cooperation technologies by both computer simulations and outdoor experimental trials. First, it is shown that that the intra-BBU cooperation can achieve an excellent transmission performance in cases of two and four MSs moving at a velocity of 90km/h by computer simulations. Second, the outdoor experimental trials clarifies that the inter-BBU cooperation maintains the maximum throughput in a wider area than non-BS cooperation when only one MS moves at a maximum velocity of 120km/h.

  • Planarized Nb 4-Layer Fabrication Process for Superconducting Integrated Circuits and Its Fabricated Device Evaluation

    Shuichi NAGASAWA  Masamitsu TANAKA  Naoki TAKEUCHI  Yuki YAMANASHI  Shigeyuki MIYAJIMA  Fumihiro CHINA  Taiki YAMAE  Koki YAMAZAKI  Yuta SOMEI  Naonori SEGA  Yoshinao MIZUGAKI  Hiroaki MYOREN  Hirotaka TERAI  Mutsuo HIDAKA  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    435-445

    We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.

  • Design and Implementation of a Software Tester for Benchmarking Stateless NAT64 Gateways Open Access

    Gábor LENCSE  

     
    POSITION PAPER-Network

      Pubricized:
    2020/08/06
      Vol:
    E104-B No:2
      Page(s):
    128-140

    The Benchmarking Working Group of IETF has defined a benchmarking methodology for IPv6 transition technologies including stateless NAT64 (also called SIIT) in RFC 8219. The aim of our effort is to design and implement a test program for SIIT gateways, which complies with RFC 8219, and thus to create the world's first standard free software SIIT benchmarking tool. In this paper, we overview the requirements for the tester on the basis of RFC 8219, and make scope decisions: throughput, frame loss rate, latency and packet delay variation (PDV) tests are implemented. We fully disclose our design considerations and the most important implementation decisions. Our tester, siitperf, is written in C++ and it uses the Intel Data Plane Development Kit (DPDK). We also document its functional tests and its initial performance estimation. Our tester is distributed as free software under GPLv3 license for the benefit of the research, benchmarking and networking communities.

  • Surface Mount Technology for Silica-Based Planar Lightwave Circuit and Its Application to Compact 16×16 Multicast Switch

    Ai YANAGIHARA  Keita YAMAGUCHI  Takashi GOH  Kenya SUZUKI  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    679-684

    We demonstrated a compact 16×16 multicast switch (MCS) made from a silica-based planar lightwave circuit (PLC). The switch utilizes a new electrical connection method based on surface mount technology (SMT). Five electrical connectors are soldered directly to the PLC by using the standard reflow process used for electrical devices. We reduced the chip size to half of one made with conventional wire bonding technology. We obtained satisfactory solder contacts and excellent switching properties. These results indicate that the proposed method is suitable for large-scale optical switches including MCSs, variable optical attenuators, dispersion compensators, and so on.

  • Feasibility of Electric Double-Layer Coupler for Wireless Power Transfer under Seawater

    Masaya TAMURA  Kousuke MURAI  Hiroaki MATSUKAMI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/01/15
      Vol:
    E103-C No:6
      Page(s):
    308-316

    This paper presents the feasibility of a capacitive coupler utilizing an electric double layer for wireless power transfer under seawater. Since seawater is an electrolyte solution, an electric double layer (EDL) is formed on the electrode surface of the coupler in direct current. If the EDL can be utilized in radio frequency, it is possible that high power transfer efficiency can be achieved under seawater because a high Q-factor can be obtained. To clarify this, the following steps need taking; First, measure the frequency characteristics of the complex permittivity in seawater and elucidate the behaviors of the EDL from the results. Second, clarify that EDL leads to an improvement in the Q-factor of seawater. It will be shown in this paper that capacitive coupling by EDL occurs using two kinds of the coupler models. Third, design a coupler with high efficiency as measured by the Q-factor and relative permittivity of EDL. Last, demonstrate that the designed coupler under seawater can achieve over 85% efficiency at a transfer distance of 5 mm and feasibility of the coupler with EDL.

1-20hit(204hit)