The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time(2217hit)

461-480hit(2217hit)

  • Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

    Ying ZHU  Jia LIU  Zhiyong FENG  Ping ZHANG  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1567-1576

    This paper investigates power allocation and outage performance for the MIMO full duplex relaying (MFDR) based on orthogonal space-time block Codes (OSTBC) in cognitive radio systems. OSTBC transmission is used as a simple way to obtain multi-antenna diversity gain. Cognitive MFDR systems offer the advantage not only of increasing spectral efficiency by spectrum sharing but also of extending the coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously due to the full duplexing. What is therefore needed is a way to optimize the transmission powers at the secondary source and relay. Therefore, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We then analyze the outage probability of the secondary user in the noise-limited and interference-limited environments under Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvement in terms of outage probability.

  • Light Source Estimation in Mobile Augmented Reality Scenes by Using Human Face Geometry

    Emre KOC  Selim BALCISOY  

     
    PAPER-Augmented Reality

      Vol:
    E97-D No:8
      Page(s):
    1974-1982

    Light source estimation and virtual lighting must be believable in terms of appearance and correctness in augmented reality scenes. As a result of illumination complexity in an outdoor scene, realistic lighting for augmented reality is still a challenging problem. In this paper, we propose a framework based on an estimation of environmental lighting from well-defined objects, specifically human faces. The method is tuned for outdoor use, and the algorithm is further enhanced to illuminate virtual objects exposed to direct sunlight. Our model can be integrated into existing mobile augmented reality frameworks to enhance visual perception.

  • Efficient Screen Space Anisotropic Blurred Soft Shadows

    Zhongxiang ZHENG  Suguru SAITO  

     
    PAPER-Rendering

      Vol:
    E97-D No:8
      Page(s):
    2038-2045

    Shadow mapping is an efficient method to generate shadows in real time computer graphics and has broad variations from hard to soft shadow synthesis. Soft shadowing based on shadow mapping is a blurring technique on a shadow map or on screen space. Blurring on screen space has an advantage for efficient sampling on a shadow map, since the blurred target array has exactly the same coordinates as the screen. However, a previous blurring method on screen space has a drawback: the generated shadow is not correct when a view direction has a large angle to the normal of the shadowed plane. In this paper, we introduce a new screen space based method for soft shadowing that is fast and generates soft shadows more accurately than the previous screen space soft shadow mapping method. The resultant images show shadows produced by our method just stand in the same place, while shadows by the previous method change in terms of penumbra while the view moves. Surprisingly, although our method is more complex than the previous method, the measurement results of the calculation time show our method is almost the same performance. This is because it controls the blurring area more accurately and thus successfully reduces multiplications for blurring.

  • Tracking People with Active Cameras Using Variable Time-Step Decisions

    Alparslan YILDIZ  Noriko TAKEMURA  Maiya HORI  Yoshio IWAI  Kosuke SATO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:8
      Page(s):
    2124-2130

    In this study, we introduce a system for tracking multiple people using multiple active cameras. Our main objective is to surveille as many targets as possible, at any time, using a limited number of active cameras. In our context, an active camera is a statically located pan-tilt-zoom camera. In this research, we aim to optimize the camera configuration to achieve maximum coverage of the targets. We first devise a method for efficient tracking and estimation of target locations in the environment. Our tracking method is able to track an unknown number of targets and easily estimate multiple future time-steps, which is a requirement for active cameras. Next, we present an optimization of camera configuration with variable time-step that is optimal given the estimated object likelihoods for multiple future frames. We confirmed our results using simulation and real videos, and show that without introducing any significant computational complexities, it is possible to use active cameras to the point that we can track and observe multiple targets very effectively.

  • Unified Analysis of ICI-Cancelled OFDM Systems in Doubly-Selective Channels

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1435-1448

    The effect of transceiver impairments (consisting of frequency offset, phase noise and doubly-selective channel) is a key factor for determining performance of an orthogonal frequency-division multiplexing (OFDM) system since the transceiver impairments trigger intercarrier interference (ICI). These impairments are well known and have been investigated separately in the past. However, these impairments usually arise concurrently and should be jointly considered from the perspectives of both receiver design and system evaluation. In this research, impact of these impairments on an OFDM system is jointly analyzed and the result degenerates to the special case where only a specific impairment is present. A mitigation method aided by segment-by-segment time-domain interpolation (STI) is then proposed following the analysis. STI is general, and its weights can be specified according to the interpolation method and system requirements. Computer simulation is used to validate the analysis and to compare the performance of the proposed method with those of other proposals.

  • Hierarchical Time-Slot Allocation for Dynamic Bandwidth Control in Optical Layer-2 Switch Network

    Masahiro NAKAGAWA  Kyota HATTORI  Naoki KIMISHIMA  Masaru KATAYAMA  Akira MISAWA  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1303-1312

    We are developing an optical layer-2 switch network that uses both wavelength-division multiplexing and time-division multiplexing technologies for efficient traffic aggregation in metro networks. For efficient traffic aggregation, path bandwidth control is key because it strongly affects bandwidth utilization efficiency. We propose a fast time-slot allocation method that uses hierarchical calculation, which divides the network-wide bandwidth-allocation problem into small-scale local bandwidth-allocation problems and solves them independently. This method has a much shorter computation complexity and enables dynamic path bandwidth control in large-scale networks. Our network will be able to efficiently accommodate dynamic traffic with limited resources by using the proposed method, leading to cost-effective metro networks.

  • A Novel Test Data Compression Scheme for SoCs Based on Block Merging and Compatibility

    Tiebin WU  Hengzhu LIU  Botao ZHANG  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1452-1460

    This paper presents a novel test data compression scheme for SoCs based on block merging and compatibility. The technique exploits the properties of compatibility and inverse compatibility between consecutive blocks, consecutive merged blocks, and two halves of the encoding merged block itself to encode the pre-computed test data. The decompression circuit is simple to be implemented and has advantage of test-independent. In addition, the proposed scheme is applicable for IP cores in SoCs since it compresses the test data without requiring any structural information of the circuit under test. Experimental results demonstrate that the proposed technique can achieve an average compression ratio up to 68.02% with significant low test application time.

  • Comparative Evaluation of Lifetime Enhancement with Fault Avoidance on Dynamically Reconfigurable Devices

    Hiroaki KONOURA  Takashi IMAGAWA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1468-1482

    Fault tolerant methods using dynamically reconfigurable devices have been studied to overcome wear-out failures. However, quantitative comparisons have not been sufficiently assessed on device lifetime enhancement with these methods, whereas they have mainly been evaluated individually from various viewpoints such as additional hardware overheads, performance, and downtime for fault recovery. This paper presents quantitative lifetime evaluations performed by simulating the fault-avoidance procedures of five representative methods under the same conditions in wear-out scenarios, applications, and device architecture. The simulation results indicated that improvements of up to 70% mean-time-to-failure (MTTF) in comparison with ideal fault avoidance could be achieved by using methods of fault avoidance with ‘row direction shift’ and ‘dynamic partial reconfiguration’. ‘Column shift’, on the other hand, attained a high degree of stability with moderate improvements in MTTF. The experimental results also revealed that spare basic elements (BEs) should be prevented from aging so that improvements in MTTF would not be adversely affected. Moreover, we found that the selection of initial mappings guided by wire utilization could increase the lifetimes of partial reconfiguration based fault avoidance.

  • The Use of Highpass Filtered Time-Spread Echo for Pitch Scaling Detection

    Hwai-Tsu HU  Hsien-Hsin CHOU  Ling-Yuan HSU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:7
      Page(s):
    1623-1626

    An echo-hiding scheme is presented to detect the pitch variation due to playback speed modification. The inserted time-spread echo is obtained by convolving the highpass filtered audio with a gain-controlled pseudo noise sequence. The perceptual evaluation confirms that the embedded echo is virtually imperceptible. Compared with the Fourier magnitude modulation, the proposed scheme attains better detection rates.

  • A 10-bit CMOS Digital-to-Analog Converter with Compact Size for Display Applications

    Mungyu KIM  Hoon-Ju CHUNG  Young-Chan JANG  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    519-525

    A 10-bit digital-to-analog converter (DAC) with a small area is proposed for data-driver integrated circuits of active-matrix liquid crystal display systems. The 10-bit DAC consists of a 7-bit resistor string, a 7-bit two-step decoder, a 2-bit logarithmic time interpolator, and a buffer amplifier. The proposed logarithmic time interpolation is achieved by controlling the charging time of a first-order low-pass filter composed of a resistor and a capacitor. The 7-bit two-step decoder that follows the 7-bit resistor string outputs an analog signal of the stepped wave with two voltage levels using the additional 1-bit digital code for the logarithmic time interpolation. The proposed 10-bit DAC is implemented using a 0.35-µm CMOS process and its supply voltage is scalable from 3.3V to 5.0V. The area of the proposed 10-bit logarithmic time interpolation DAC occupies 57% of that of the conventional 10-bit resistor-string DAC. The DNL and INL of the implemented 10-bit DAC are +0.29/-0.30 and +0.47/-0.36 LSB, respectively.

  • Bimodal Vertex Splitting: Acceleration of Quadtree Triangulation for Terrain Rendering

    Eun-Seok LEE  Jin-Hee LEE  Byeong-Seok SHIN  

     
    PAPER-Computer Graphics

      Vol:
    E97-D No:6
      Page(s):
    1624-1633

    Massive digital elevation models require a large number of geometric primitives that exceed the throughput of the existing graphics hardware. For the interactive visualization of these datasets, several adaptive reconstruction methods that reduce the number of primitives have been introduced over the decades. Quadtree triangulation, based on subdivision of the terrain into rectangular patches at different resolutions, is the most frequently used terrain reconstruction method. This usually accomplishes the triangulation using LOD (level-of-detail) selection and crack removal based on geometric errors. In this paper, we present bimodal vertex splitting, which performs LOD selection and crack removal concurrently on a GPU. The first mode splits each vertex for LOD selection and the second splits each vertex for crack removal. By performing these two operations concurrently on a GPU, we can efficiently accelerate the rendering speed by reducing the computation time and amount of transmission data in comparison with existing quadtree-based rendering methods.

  • Opportunistic Decouple-and-Forward Relaying: Harnessing Distributed Antennas

    Jaeyoung LEE  Hyundong SHIN  Jun HEO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:6
      Page(s):
    1148-1156

    In this paper, we consider decouple-and-forward (DCF) relaying, where the relay encodes and amplifies decoupled data using orthogonal space-time block codes (OSTBCs), to achieve the maximum diversity gain of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying. Since the channel status of all antennas is generally unknown and time-varying for cooperation in multi-antenna multiple-relay systems, we investigate an opportunistic relaying scheme for DCF relaying to harness distributed antennas and minimize the cooperation overheads by not using the global channel state information (CSI). In addition, for realistic wireless channels which have spatial fading correlation due to closely-spaced antenna configurations and poor scattering environments, we analyze the exact and lower bound on the symbol error probability (SEP) of the opportunistic DCF relaying over spatially correlated MIMO Rayleigh fading channels. Numerical results show that, even in the presence of spatial fading correlation, the proposed opportunistic relaying scheme is efficient and achieves additional performance gain with low overhead.

  • Solar Photovoltaic Emulator System Based on a Systolic Array Network

    Pedro PEREZ MUÑOZ  Renan QUIJANO CETINA  Manuel FLOTA BAÑUELOS  Alejandro CASTILLO ATOCHE  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:5
      Page(s):
    1119-1120

    A novel real-time solar photovoltaic (SPV) emulator system, based on a systolic array network (SAN), is presented. This architecture follows the piecewise polynomial approximation and parallel computing techniques, and shows its capability to generate high-accuracy I-V, P-V curves, instead of traditional DSP and lookup table-based SPV systems.

  • Protocol Inheritance Preserving Soundizability Problem and Its Polynomial Time Procedure for Acyclic Free Choice Workflow Nets

    Shingo YAMAGUCHI  Huan WU  

     
    PAPER-Formal Construction

      Vol:
    E97-D No:5
      Page(s):
    1181-1187

    A workflow may be extended to adapt to market growth, legal reform, and so on. The extended workflow must be logically correct, and inherit the behavior of the existing workflow. Even if the extended workflow inherits the behavior, it may be not logically correct. Can we modify it so that it satisfies not only behavioral inheritance but also logical correctness? This is named behavioral inheritance preserving soundizability problem. There are two kinds of behavioral inheritance: protocol inheritance and projection inheritance. In this paper, we tackled protocol inheritance preserving soundizability problem using a subclass of Petri nets called workflow nets. Limiting our analysis to acyclic free choice workflow nets, we formalized the problem. And we gave a necessary and sufficient condition on the problem, which is the existence of a key structure of free choice workflow nets called TP-handle. Based on this condition, we also constructed a polynomial time procedure to solve the problem.

  • Different Mechanisms of Temperature Dependency of N-Hit SET in Bulk and PD-SOI Technology

    Biwei LIU  Yankang DU  Kai ZHANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E97-C No:5
      Page(s):
    455-459

    Many studies have reported that the single-event transient (SET) width increases with temperature. However, the mechanism for this temperature dependency is not clear, especially for an N-hit SET. In this study, TCAD simulations are carried out to study the temperature dependence of N-hit SETs in detail. Several possible factors are examined, and the results show that the temperature dependence in bulk devices is due to the decrease in the carrier mobility with temperature in both the struck NMOS and the pull-up PMOS. In contrast, the temperature dependence in SOI devices is due to the decrease in the diffusion constant and carrier lifetime with temperature, which enhances the parasitic bipolar effect.

  • TESLA Source Authentication Protocol Verification Experiment in the Timed OTS/CafeOBJ Method: Experiences and Lessons Learned

    Iakovos OURANOS  Kazuhiro OGATA  Petros STEFANEAS  

     
    PAPER-Formal Verification

      Vol:
    E97-D No:5
      Page(s):
    1160-1170

    In this paper we report on experiences gained and lessons learned by the use of the Timed OTS/CafeOBJ method in the formal verification of TESLA source authentication protocol. These experiences can be a useful guide for the users of the OTS/CafeOBJ, especially when dealing with such complex systems and protocols.

  • Clausius Normalized Field-Based Shape-Independent Motion Segmentation

    Eunjin KOH  Chanyoung LEE  Dong Gil JEONG  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:5
      Page(s):
    1254-1263

    We propose a novel motion segmentation method based on a Clausius Normalized Field (CNF), a probabilistic model for treating time-varying imagery, which estimates entropy variations by observing the entropy definitions of Clausius and Boltzmann. As pixels of an image are viewed as a state of lattice-like molecules in a thermodynamic system, estimating entropy variations of pixels is the same as estimating their degrees of disorder. A greater increase in entropy means that a pixel has a higher chance of belonging to moving objects rather than to the background, because of its higher disorder. In addition to these homologous operations, a CNF naturally takes into consideration both spatial and temporal information to avoid local maxima, which substantially improves the accuracy of motion segmentation. Our motion segmentation system using CNF clearly separates moving objects from their backgrounds. It also effectively eliminates noise to a level achieved when refined post-processing steps are applied to the results of general motion segmentations. It requires less computational power than other random fields and generates automatically normalized outputs without additional post-processes.

  • Local Frequency Folding Method for Fast PN-Code Acquisition

    Wenquan FENG  Xiaodi XING  Qi ZHAO  ZuLin WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1072-1079

    The large Doppler offset that exists in high dynamic environments poses a serious impediment to the acquisition of direct sequence spread spectrum (DSSS) signals. To ensure acceptable detection probabilities, the frequency space has to be finely divided, which leads to complicated acquisition structures and excessively long acquisition time at low SNR. A local frequency folding (LFF) method designed for combined application with established techniques dedicated to PN-code synchronization is proposed in this paper. Through modulating local PN-code block with a fixed waveform obtained by folding all frequency cells together, we eliminate the need for frequency search and ease the workload of acquisition. We also analyze the performance of LFF and find that the detection performance degradation from folding can be compensated by FFT-based coherent integration. The study is complemented with numerical simulations showing that the proposed method has advantages over unfolding methods with respect to detection probability and mean acquisition time, and the advantage becomes obvious but limited if the folded number gets larger.

  • A Fair and Efficient Agent Scheduling Method for Content-Based Information Retrieval with Individual Time Constraints and Its Implementation

    Kazuhiko KINOSHITA  Nariyoshi YAMAI  Koso MURAKAMI  

     
    PAPER-Network System

      Vol:
    E97-B No:5
      Page(s):
    945-951

    The recent explosive growth in information networks has driven a huge increase in content. For efficient and flexible information retrieval over such large networks, agent technology has received much attention. We previously proposed an agent execution control method for time-constrained information retrieval that finds better results by terminating an agent that has already acquired results of high-enough quality or one that is unlikely to improve the quality of results with continued retrieval. However, this method assumed that all agents have identical time constraints. This leads to a disparity in the obtained score between users who give individual time constraints. In this paper, we propose a fair and efficient scheduling method based on the expected improvement of the highest score (EIS). The proposed method allocates all CPU resources to the agent that has the highest EIS to decrease the difference between users' scores and to increase the mean highest score of requested results.

  • Textual Approximation Methods for Time Series Classification: TAX and l-TAX Open Access

    Abdulla Al MARUF  Hung-Hsuan HUANG  Kyoji KAWAGOE  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    798-810

    A lot of work has been conducted on time series classification and similarity search over the past decades. However, the classification of a time series with high accuracy is still insufficient in applications such as ubiquitous or sensor systems. In this paper, a novel textual approximation of a time series, called TAX, is proposed to achieve high accuracy time series classification. l-TAX, an extended version of TAX that shows promising classification accuracy over TAX and other existing methods, is also proposed. We also provide a comprehensive comparison between TAX and l-TAX, and discuss the benefits of both methods. Both TAX and l-TAX transform a time series into a textual structure using existing document retrieval methods and bioinformatics algorithms. In TAX, a time series is represented as a document like structure, whereas l-TAX used a sequence of textual symbols. This paper provides a comprehensive overview of the textual approximation and techniques used by TAX and l-TAX

461-480hit(2217hit)