The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time(2217hit)

521-540hit(2217hit)

  • Experimental Analysis of Arc Waveform Affected by Holder Temperature Change at Slowly Separation of Silver-Tin Dioxide Contacts

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    PAPER

      Vol:
    E96-C No:9
      Page(s):
    1110-1118

    Arc discharge at breaking electrical contact is considered as a main source of not only degradation of the electrical property but also an undesired electromagnetic (EM) noise. In order to clarify the effect of holder temperature on the bridge and arc-duration, opening-waveforms at slowly separating silver-tin dioxide contact with different holder temperature are measured and discussed experimentally in this paper. Firstly, as opening-waveforms, the contact voltage, the contact current and the movement of moving contact related to the gap length are measured simultaneously. Secondly, the relationship between temperature of the holder and duration of the arc was quantified experimentally. It was revealed that as the initial temperature of the holder becomes higher, arc-duration becomes slightly longer. More importantly, the holder temperature dependencies of percentage of each-phase (metallic and gaseous-phases) are different with different closed-current.

  • Identification of Smallest Unacceptable Combinations of Simultaneous Component Failures in Information Systems

    Kumiko TADANO  Jianwen XIANG  Fumio MACHIDA  Yoshiharu MAENO  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1941-1951

    Large-scale disasters may cause simultaneous failures of many components in information systems. In the design for disaster recovery, operational procedures to recover from simultaneous component failures need to be determined so as to satisfy the time-to-recovery objective within the limited budget. For this purpose, it is beneficial to identify the smallest unacceptable combination of component failures (SUCCF) which exceeds the acceptable cost for recovering the system. This allows us to know the limitation of the recovery capability of the designed recovery operation procedure. In this paper, we propose a technique to identify the SUCCF by predicting the required cost for recovery from each combination of component failures with and without two-person cross-check of execution of recovery operations. We synthesize analytic models from the description of recovery operation procedure in the form of SysML Activity Diagram, and solve the models to predict the time-to-recovery and the cost. An example recovery operation procedure for a commercial database management system is used to demonstrate the proposed technique.

  • Time-Delayed Collaborative Routing and MAC Protocol for Maximizing the Network Lifetime in MANETs

    Woncheol CHO  Daeyoung KIM  

     
    PAPER-Network

      Vol:
    E96-B No:9
      Page(s):
    2213-2223

    This paper proposes T-CROM (Time-delayed Collaborative ROuting and MAC) protocol, that allows collaboration between network and MAC layers in order to extend the lifetime of MANETs in a resources-limited environment. T-CROM increases the probability of preventing energy-poor nodes from joining routes by using a time delay function that is inversely proportional to the residual battery capacity of intermediate nodes, making a delay in the route request (RREQ) packets transmission. The route along which the first-arrived RREQ packet traveled has the smallest time delay, and thus the destination node identifies the route with the maximum residual battery capacity. This protocol leads to a high probability of avoiding energy-poor nodes and promotes energy-rich nodes to join routes in the route establishment phase. In addition, T-CROM controls the congestion between neighbors and reduces the energy dissipation by providing an energy-efficient backoff time by considering both the residual battery capacity of the host itself and the total number of neighbor nodes. The energy-rich node with few neighbors has a short backoff time, and the energy-poor node with many neighbors gets assigned a large backoff time. Thus, T-CROM controls the channel access priority of each node in order to prohibit the energy-poor nodes from contending with the energy-rich nodes. T-CROM fairly distributes the energy consumption of each node, and thus extends the network lifetime collaboratively. Simulation results show that T-CROM reduces the number of total collisions, extends the network lifetime, decreases the energy consumption, and increases the packet delivery ratio, compared with AOMDV with IEEE 802.11 DCF and BLAM, a battery-aware energy efficient MAC protocol.

  • Reconfigurable Multi-Resolution Performance Profiling in Android Applications

    Ying-Dar LIN  Kuei-Chung CHANG  Yuan-Cheng LAI  Yu-Sheng LAI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:9
      Page(s):
    2039-2046

    The computing of applications in embedded devices suffers tight constraints on computation and energy resources. Thus, it is important that applications running on these resource-constrained devices are aware of the energy constraint and are able to execute efficiently. The existing execution time and energy profiling tools could help developers to identify the bottlenecks of applications. However, the profiling tools need large space to store detailed profiling data at runtime, which is a hard demand upon embedded devices. In this article, a reconfigurable multi-resolution profiling (RMP) approach is proposed to handle this issue on embedded devices. It first instruments all profiling points into source code of the target application and framework. Developers can narrow down the causes of bottleneck by adjusting the profiling scope using the configuration tool step by step without recompiling the profiled targets. RMP has been implemented as an open source tool on Android systems. Experiment results show that the required log space using RMP for a web browser application is 25 times smaller than that of Android debug class, and the profiling error rate of execution time is proven 24 times lower than that of debug class. Besides, the CPU and memory overheads of RMP are only 5% and 6.53% for the browsing scenario, respectively.

  • Optimal Trigger Time of Software Rejuvenation under Probabilistic Opportunities

    Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1933-1940

    This paper presents the opportunity-based software rejuvenation policy and the optimization problem of software rejuvenation trigger time maximizing the system performance index. Our model is based on a basic semi-Markov software rejuvenation model by Dohi et al. 2000 under the environment where possible time, called opportunity, to execute software rejuvenation is limited. In the paper, we consider two stochastic point processes; renewal process and Markovian arrival process to represent the opportunity process. In particular, we derive the existence condition of the optimal trigger time under the two point processes analytically. In numerical examples, we illustrate the optimal design of the rejuvenation trigger schedule based on empirical data.

  • On Detecting Delay Faults Using Time-to-Digital Converter Embedded in Boundary Scan

    Hiroyuki YOTSUYANAGI  Hiroyuki MAKIMOTO  Takanobu NIMIYA  Masaki HASHIZUME  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1986-1993

    This paper proposes a method for testing delay faults using a boundary scan circuit in which a time-to-digital converter (TDC) is embedded. The incoming transitions from the other cores or chips are captured at the boundary scan circuit. The TDC circuit is modified to set the initial value for a delay line through which the transition is propagated. The condition for measuring timing slacks of two or more paths is also investigated since the overlap of the signals may occur in the delay line of the TDC in our boundary scan circuit. An experimental IC with the TDC and boundary scan is fabricated and is measured to estimate the delay of some paths measured by the TDC embedded in boundary scan cells. The simulation results for a benchmark circuit with the boundary scan circuit are also shown for the case that timing slacks of multiple paths can be observed even if the signals overlap in the TDC.

  • Fault Diagnosis and Reconfiguration Method for Network-on-Chip Based Multiple Processor Systems with Restricted Private Memories

    Masashi IMAI  Tomohiro YONEDA  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1914-1925

    We propose a fault diagnosis and reconfiguration method based on the Pair and Swap scheme to improve the reliability and the MTTF (Mean Time To Failure) of network-on-chip based multiple processor systems where each processor core has its private memory. In the proposed scheme, two identical copies of a given task are executed on a pair of processor cores and the results are compared repeatedly in order to detect processor faults. If a fault is detected by mismatches, the fault is identified and isolated using a TMR (Triple Module Redundancy) and the system is reconfigured by the redundant processor cores. We propose that each task is quadruplicated and statically assigned to private memories so that each memory has only two different tasks. We evaluate the reliability of the proposed quadruplicated task allocation scheme in the viewpoint of MTTF. As a result, the MTTF of the proposed scheme is over 4.3 times longer than that of the duplicated task allocation scheme.

  • A Range-Extended and Area-Efficient Time-to-Digital Converter Utilizing Ring-Tapped Delay Line

    Xin-Gang WANG  Fei WANG  Rui JIA  Rui CHEN  Tian ZHI  Hai-Gang YANG  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:9
      Page(s):
    1184-1194

    This paper proposes a coarse-fine Time-to-Digital Converter (TDC), based on a Ring-Tapped Delay Line (RTDL). The TDC achieves the picosecond's level timing resolution and microsecond's level dynamic range at low cost. The TDC is composed of two coarse time measurement blocks, a time residue generator, and a fine time measurement block. In the coarse blocks, RTDL is constructed by redesigning the conventional Tapped Delay Line (TDL) in a ring structure. A 12-bit counter is employed in one of the two coarse blocks to count the cycle times of the signal traveling in the RTDL. In this way, the input range is increased up to 20.3µs without use of an external reference clock. Besides, the setup time of soft-edged D-flip-flops (SDFFs) adopted in RTDL is set to zero. The adjustable time residue generator picks up the time residue of the coarse block and propagates the residue to the fine block. In the fine block, we use a Vernier Ring Oscillator (VRO) with MOS capacitors to achieve a scalable timing resolution of 11.8ps (1 LSB). Experimental results show that the measured characteristic curve has high-level linearity; the measured DNL and INL are within ± 0.6 LSB and ± 1.5 LSB, respectively. When stimulated by constant interval input, the standard deviation of the system is below 0.35 LSB. The dead time of the proposed TDC is less than 650ps. When operating at 5 MSPS at 3.3V power supply, the power consumption of the chip is 21.5mW. Owing to the use of RTDL and VRO structures, the chip core area is only 0.35mm × 0.28mm in a 0.35µm CMOS process.

  • Development of RFID Antenna for Detection of Urination

    Hiromasa NAKAJIMA  Masaharu TAKAHASHI  Kazuyuki SAITO  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:9
      Page(s):
    2244-2250

    This paper introduces a radio frequency identification (RFID) tag for urination detection. The proposed tag is embedded into paper diapers in order to detect the patient's urination immediately. For this tag, we designed an RFID tag antenna at 950MHz, which matches the impedance of the associated integrated circuit (IC) chip. In addition, we calculate the antenna characteristics and measure the reflection coefficient (S11) and radiation pattern of the antenna. The results show that this system can be used to detect urination.

  • Design Requirements for Improving QoE of Web Service Using Time-Fillers

    Sumaru NIIDA  Satoshi UEMURA  Etsuko T. HARADA  

     
    PAPER-Network

      Vol:
    E96-B No:8
      Page(s):
    2069-2075

    As mobile multimedia services expand, user behavior will become more diverse and the control of service quality from the user's perspective will become more important in service design. The quality of the network is one of the critical factors determining mobile service quality. However, this has mainly been evaluated in objective physical terms, such as delay reduction and bandwidth expansion. It is less common to use a human-centered design viewpoint when improving network performance. In this paper, we discuss ways to improve the quality of web services using time-fillers that actively address the human factors to improve the subjective quality of a mobile network. A field experiment was conducted, using a prototype. The results of the field experiment show that time-fillers can significantly decrease user dissatisfaction with waiting, but that this effect is strongly influenced by user preferences concerning content. Based on these results, we discuss the design requirements for effective use of time-fillers.

  • Study of a Reasonable Initial Center Selection Method Applied to a K-Means Clustering

    WonHee LEE  Samuel Sangkon LEE  Dong-Un AN  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:8
      Page(s):
    1727-1733

    Clustering methods are divided into hierarchical clustering, partitioning clustering, and more. K-Means is a method of partitioning clustering. We improve the performance of a K-Means, selecting the initial centers of a cluster through a calculation rather than using random selecting. This method maximizes the distance among the initial centers of clusters. Subsequently, the centers are distributed evenly and the results are more accurate than for initial cluster centers selected at random. This is time-consuming, but it can reduce the total clustering time by minimizing allocation and recalculation. Compared with the standard algorithm, F-Measure is more accurate by 5.1%.

  • Architecture of an Asynchronous FPGA for Handshake-Component-Based Design

    Yoshiya KOMATSU  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Architecture

      Vol:
    E96-D No:8
      Page(s):
    1632-1644

    This paper presents a novel architecture of an asynchronous FPGA for handshake-component-based design. The handshake-component-based design is suitable for large-scale, complex asynchronous circuit because of its understandability. This paper proposes an area-efficient architecture of an FPGA that is suitable for handshake-component-based asynchronous circuit. Moreover, the Four-Phase Dual-Rail encoding is employed to construct circuits robust to delay variation because the data paths are programmable in FPGA. The FPGA based on the proposed architecture is implemented in a 65 nm process. Its evaluation results show that the proposed FPGA can implement handshake components efficiently.

  • Finding Interesting Sequential Patterns in Sequence Data Streams via a Time-Interval Weighting Approach

    Joong Hyuk CHANG  Nam Hun PARK  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:8
      Page(s):
    1734-1744

    The mining problem over data streams has recently been attracting considerable attention thanks to the usefulness of data mining in various application fields of information science, and sequence data streams are so common in daily life. Therefore, a study on mining sequential patterns over sequence data streams can give valuable results for wide use in various application fields. This paper proposes a new framework for mining novel interesting sequential patterns over a sequence data stream and a mining method based on the framework. Assuming that a sequence with small time-intervals between its data elements is more valuable than others with large time-intervals, the novel interesting sequential pattern is defined and found by analyzing the time-intervals of data elements in a sequence as well as their orders. The proposed framework is capable of obtaining more interesting sequential patterns over sequence data streams whose data elements are highly correlated in terms of generation time.

  • On-Line Model Parameter Estimations for Time-Delay Systems

    Jung Hun PARK  Soohee HAN  Bokyu KWON  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E96-D No:8
      Page(s):
    1867-1870

    This paper concerns a problem of on-line model parameter estimations for multiple time-delay systems. In order to estimate unknown model parameters from measured state variables, we propose two schemes using Lyapunov's direct method, called parallel and series-parallel model estimators. It is shown through a numerical example that the proposed parallel and series-parallel model estimators can be effective when sufficiently rich inputs are applied.

  • Link Prediction in Social Networks Using Information Flow via Active Links

    Lankeshwara MUNASINGHE  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:7
      Page(s):
    1495-1502

    Link prediction in social networks, such as friendship networks and coauthorship networks, has recently attracted a great deal of attention. There have been numerous attempts to address the problem of link prediction through diverse approaches. In the present paper, we focused on predicting links in social networks using information flow via active links. The information flow heavily depends on link activeness. The links become active if the interactions happen frequently and recently with respect to the current time. The time stamps of the interactions or links provide vital information for determining the activeness of the links. In the present paper, we introduced a new algorithm, referred to as T_Flow, that captures the important aspects of information flow via active links in social networks. We tested T_Flow with two social network data sets, namely, a data set extracted from Facebook friendship network and a coauthorship network data set extracted from ePrint archives. We compare the link prediction performances of T_Flow with the previous method PropFlow. The results of T_Flow method revealed a notable improvement in link prediction for facebook data and significant improvement in link prediction for coauthorship data.

  • A Resilient Forest-Based Application Level Multicast for Real-Time Streaming

    Kazuya TAKAHASHI  Tatsuya MORI  Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Internet

      Vol:
    E96-B No:7
      Page(s):
    1874-1885

    In recent years, real-time streaming has become widespread as a major service on the Internet. However, real-time streaming has a strict playback deadline. Application level multicasts using multiple distribution trees, which are known as forests, are an effective approach for reducing delay and jitter. However, the failure or departure of nodes during forest-based multicast transfer can severely affect the performance of other nodes. Thus, the multimedia data quality is degraded until the distribution trees are repaired. This means that increasing the speed of recovery from isolation is very important, especially in real-time streaming services. In this paper, we propose three methods for resolving this problem. The first method is a random-based proactive method that achieves rapid recovery from isolation and gives efficient “Randomized Forwarding” via cooperation among distribution trees. Each node forwards the data it receives to child nodes in its tree, and then, the node randomly transferring it to other trees with a predetermined probability. The second method is a reactive method, which provides a reliable isolation recovery method with low overheads. In this method, an isolated node requests “Continuous Forwarding” from other nodes if it detects a problem with a parent node. Forwarding to the nearest nodes in the IP network ensures that this method is efficient. The third method is a hybrid method that combines these two methods to achieve further performance improvements. We evaluated the performances of these proposed methods using computer simulations. The simulation results demonstrated that our proposed methods delivered isolation recovery and that the hybrid method was the most suitable for real-time streaming.

  • Increasing Lifetime of a Two-Dimensional Wireless Sensor Network Using Radio Range Adjustments

    Hamidreza TAVAKOLI  Majid NADERI  

     
    PAPER-Information Network

      Vol:
    E96-D No:7
      Page(s):
    1489-1494

    Optimizing lifetime of a wireless sensor network has received considerable attention in recent years. In this paper, using the feasibility and simplicity of grid-based clustering and routing schemes, we investigate optimizing lifetime of a two-dimensional wireless sensor network. Thus how to determine the optimal grid sizes in order to prolong network lifetime becomes an important problem. At first, we propose a model for lifetime of a grid in equal-grid model. We also consider that nodes can transfer packets to a grid which is two or more grids away in order to investigate the trade-off between traffic and transmission energy consumption. After developing the model for an adjustable-grid scenario, in order to optimize lifetime of the network, we derive the optimal values for dimensions of the grids. The results show that if radio ranges are adjusted appropriately, the network lifetime in adjustable-grid model is prolonged compared with the best case where an equal-grid model is used.

  • Time Zone Correlation Analysis of Malware/Bot Downloads

    Khamphao SISAAT  Hiroaki KIKUCHI  Shunji MATSUO  Masato TERADA  Masashi FUJIWARA  Surin KITTITORNKUN  

     
    PAPER

      Vol:
    E96-B No:7
      Page(s):
    1753-1763

    A botnet attacks any Victim Hosts via the multiple Command and Control (C&C) Servers, which are controlled by a botmaster. This makes it more difficult to detect the botnet attacks and harder to trace the source country of the botmaster due to the lack of the logged data about the attacks. To locate the C&C Servers during malware/bot downloading phase, we have analyzed the source IP addresses of downloads to more than 90 independent Honeypots in Japan in the CCC (Cyber Clean Center) dataset 2010 comprising over 1 million data records and almost 1 thousand malware names. Based on GeoIP services, a Time Zone Correlation model has been proposed to determine the correlation coefficient between bot downloads from Japan and other source countries. We found a strong correlation between active malware/bot downloads and time zone of the C&C Servers. As a result, our model confirms that malware/bot downloads are synchronized with time zone (country) of the corresponding C&C Servers so that the botmaster can be possibly traced.

  • A 36-mW 1.5-GS/s 7-Bit Time-Interleaved SAR ADC Using Source Follower Based Track-and-Hold Circuit in 65-nm CMOS

    Masanori FURUTA  Ippei AKITA  Junya MATSUNO  Tetsuro ITAKURA  

     
    PAPER-Analog Signal Processing

      Vol:
    E96-A No:7
      Page(s):
    1552-1561

    This paper presents a 7-bit 1.5-GS/s time-interleaved (TI) SAR ADC. The scheme achieves better isolation between sub-ADCs thanks to embedding a track-and-hold (T/H) amplifier and reference voltage buffer in each sub-ADC. The proposed dynamic T/H circuit enables high-speed, low-power operation. The prototype is fabricated in a 65-nm CMOS technology. The total active area is 0.14,mm2 and the ADC consumes 36 mW from a 1.2-V supply. The measured results show the peak spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are 52.4 dB and 39.6 dB, respectively, and an figure of Merit (FoM) of 300 fJ/conv. is achieved.

  • Worst Case Response Time Analysis for Messages in Controller Area Network with Gateway

    Yong XIE  Gang ZENG  Yang CHEN  Ryo KURACHI  Hiroaki TAKADA  Renfa LI  

     
    PAPER-Software System

      Vol:
    E96-D No:7
      Page(s):
    1467-1477

    In modern automobiles, Controller Area Network (CAN) has been widely used in different sub systems that are connected by using gateway. While a gateway is necessary to integrate different electronic sub systems, it brings challenges for the analysis of Worst Case Response Time (WCRT) for CAN messages, which is critical from the safety point of view. In this paper, we first analyzed the challenges for WCRT analysis of messages in gateway-interconnected CANs. Then, based on the existing WCRT analysis method proposed for one single CAN, a new WCRT analysis method that uses two new definitions to analyze the interfering delay of sporadically arriving gateway messages is proposed for non-gateway messages. Furthermore, a division approach, where the end-to-end WCRT analysis of gateway messages is transformed into the similar situation with that of non-gateway messages, is adopted for gateway messages. Finally, the proposed method is extended to include CANs with different bandwidths. The proposed method is proved to be safe, and experimental results demonstrated its effectiveness by comparing it with a full space searching based simulator and applying it to a real message set.

521-540hit(2217hit)