The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time(2217hit)

41-60hit(2217hit)

  • Real-Time Image-Based Vibration Extraction with Memory-Efficient Optical Flow and Block-Based Adaptive Filter

    Taito MANABE  Yuichiro SHIBATA  

     
    PAPER

      Pubricized:
    2022/09/05
      Vol:
    E106-A No:3
      Page(s):
    504-513

    In this paper, we propose a real-time vibration extraction system, which extracts vibration component within a given frequency range from videos in real time, for realizing tremor suppression used in microsurgery assistance systems. To overcome the problems in our previous system based on the mean Lucas-Kanade (LK) optical flow of the whole frame, we have introduced a new architecture combining dense optical flow calculated with simple feature matching and block-based band-pass filtering using band-limited multiple Fourier linear combiner (BMFLC). As a feature of optical flow calculation, we use the simplified rotation-invariant histogram of oriented gradients (RIHOG) based on a gradient angle quantized to 1, 2, or 3 bits, which greatly reduces the usage of memory resources for a frame buffer. An obtained optical flow map is then divided into multiple blocks, and BMFLC is applied to the mean optical flow of each block independently. By using the L1-norm of adaptive weight vectors in BMFLC as a criterion, blocks belonging to vibrating objects can be isolated from background at low cost, leading to better extraction accuracy compared to the previous system. The whole system for 480p and 720p resolutions can be implemented on a single Xilinx Zynq-7000 XC7Z020 FPGA without any external memory, and can process a video stream supplied directly from a camera at 60fps.

  • A New Subsample Time Delay Estimation Algorithm for LFM-Based Detection

    Cui YANG  Yalu XU  Yue YU  Gengxin NING  Xiaowu ZHU  

     
    PAPER-Ultrasonics

      Pubricized:
    2022/09/09
      Vol:
    E106-A No:3
      Page(s):
    575-581

    This paper investigated a Subsample Time delay Estimation (STE) algorithm based on the amplitude of cross-correlation function to improve the estimation accuracy. In this paper, a rough time delay estimation is applied based on traditional cross correlator, and a fine estimation is achieved by approximating the sampled cross-correlation sequence to the amplitude of the theoretical cross-correlation function for linear frequency modulation (LFM) signal. Simulation results show that the proposed algorithm outperforms existing methods and can effectively improve time delay estimation accuracy with the complexity comparable to the traditional cross-correlation method. The theoretical Cramér-Rao Bound (CRB) is derived, and simulations demonstrate that the performance of STE can approach the boundary. Eventually, four important parameters discussed in the simulation to explore the impact on Mean Squared Error (MSE).

  • Tourism Application Considering Waiting Time

    Daiki SAITO  Jeyeon KIM  Tetsuya MANABE  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    633-643

    Currently, the proportion of independent travel is increasing in Japan. Therefore, earlier studies supporting itinerary planning have been presented. However, these studies have only insufficiently considered rural tourism. For example, tourist often use public transportation during trips in rural areas, although it is often difficult for a tourist to plan an itinerary for public transportation. Even if an itinerary can be planned, it will entail long waiting times at the station or bus stop. Nevertheless, earlier studies have only insufficiently considered these elements in itinerary planning. On the other hand, navigation is necessary in addition to itinerary creation. Particularly, recent navigation often considers dynamic information. During trips using public transportation, schedule changes are important dynamic information. For example, tourist arrive at bus stop earlier than planned. In such case, the waiting time will be longer than the waiting time included in the itinerary. In contrast, if a person is running behind schedule, a risk arises of missing bus. Nevertheless, earlier studies have only insufficiently considered these schedule changes. In this paper, we construct a tourism application that considers the waiting time to improve the tourism experience in rural areas. We define waiting time using static waiting time and dynamic waiting time. Static waiting time is waiting time that is included in the itinerary. Dynamic waiting time is the waiting time that is created by schedule changes during a trip. With this application, static waiting times is considered in the planning function. The dynamic waiting time is considered in the navigation function. To underscore the effectiveness of this application, experiments of the planning function and experiments of the navigation function is conducted in Tsuruoka City, Yamagata Prefecture. Based on the results, we confirmed that a tourist can readily plan a satisfactory itinerary using the planning function. Additionally, we confirmed that Navigation function can use waiting times effectively by suggesting additional tourist spots.

  • A Data-Driven Gain Tuning Method for Automatic Hovering Control of Multicopters via Just-in-Time Modeling

    Tatsuya KAI  Ryouhei KAKURAI  

     
    LETTER-Systems and Control

      Pubricized:
    2022/08/29
      Vol:
    E106-A No:3
      Page(s):
    644-646

    This study develops a new automatic hovering control method based on just-in-time modeling for a multicopter. Especially, the main aim is to compute gains of a feedback control law such that the multicopter hovers at a desired height and at a desired time without overshoot/undershoot. First, a database that contains various hovering data is constructed, and then the proposed method computes gains for a query input from the database. From simulation results, it turns out that the multicopter achieves control purposes, and hence the new method is effective.

  • Double-Directional Time-Spatial Measurement Method Using Synthetic Aperture Antenna

    Kazuma TOMIMOTO  Ryo YAMAGUCHI  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    250-259

    The 5th-generation mobile communication uses multi-element array antennas in not only base stations but also mobile terminals. In order to design multi-element array antennas efficiently, it is important to acquire the characteristics of the direction of arrival (DOA) and direction of departure (DOD), and a highly accurate and simple measurement method is required. This paper proposes a highly accurate and simple method to measure DOA and DOD by applying synthetic aperture (SA) processed at both Rx and Tx sides. It is also shown that the addition of beam scanning to the proposed method can reduce the measurement time while maintaining the peak detection resolution. Moreover, experiments in an anechoic chamber and a shielded room using actual wave sources confirm that DOA and DOD can be detected with high accuracy.

  • Fully Digital Calibration Technique for Channel Mismatch of TIADC at Any Frequency

    Hongmei CHEN  Jian WANG  Lanyu WANG  Long LI  Honghui DENG  Xu MENG  Yongsheng YIN  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    84-92

    This paper presents a fully digital modulation calibration technique for channel mismatch of TIADC at any frequency. By pre-inputting a test signal in TIADC, the mismatch errors are estimated and stored, and the stored values will be extracted for compensation when the input signal is at special frequency which can be detected by a threshold judgement module, thus solving the problem that the traditional modulation calibration algorithm cannot calibrate the signal at special frequency. Then, by adjusting the operation order among the error estimation coefficient, modulation function and input signal in the calibration loop, further, the order of correlation and modulation in the error estimation module, the complexity of the proposed calibration algorithm is greatly reduced and it will not increase with the number of channels of TIADC. What's more, the hardware consumption of filters in calibration algorithm is greatly reduced by introducing a CSD (Canonical Signed Digit) coding technique based on Horner's rule and sub-expression sharing. Applied to a four-channel 14bit 560MHz TIADC system, with input signal at 75.6MHz, the FPGA verification results show that, after calibration, the spurious-free dynamic range (SFDR) improves from 33.47dB to 99.81dB and signal-to-noise distortion ratio (SNDR) increases from 30.15dB to 81.89dB.

  • RT-libSGM: FPGA-Oriented Real-Time Stereo Matching System with High Scalability

    Kaijie WEI  Yuki KUNO  Masatoshi ARAI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:3
      Page(s):
    337-348

    Stereo depth estimation has become an attractive topic in the computer vision field. Although various algorithms strive to optimize the speed and the precision of estimation, the energy cost of a system is also an essential metric for an embedded system. Among these various algorithms, Semi-Global Matching (SGM) has been a popular choice for some real-world applications because of its accuracy-and-speed balance. However, its power consumption makes it difficult to be applied to an embedded system. Thus, we propose a robust stereo matching system, RT-libSGM, working on the Xilinx Field-Programmable Gate Array (FPGA) platforms. The dedicated design of each module optimizes the speed of the entire system while ensuring the flexibility of the system structure. Through an evaluation on a Zynq FPGA board called M-KUBOS, RT-libSGM achieves state-of-the-art performance with lower power consumption. Compared with the benchmark design (libSGM) working on the Tegra X2 GPU, RT-libSGM runs more than 2× faster at a much lower energy cost.

  • Intelligent Reconfigurable Surface-Aided Space-Time Line Code for 6G IoT Systems: A Low-Complexity Approach

    Donghyun KIM  Bang Chul JUNG  

     
    LETTER-Information Theory

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:2
      Page(s):
    154-158

    Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.

  • A Comparative Study of Data Collection Periods for Just-In-Time Defect Prediction Using the Automatic Machine Learning Method

    Kosuke OHARA  Hirohisa AMAN  Sousuke AMASAKI  Tomoyuki YOKOGAWA  Minoru KAWAHARA  

     
    LETTER

      Pubricized:
    2022/11/11
      Vol:
    E106-D No:2
      Page(s):
    166-169

    This paper focuses on the “data collection period” for training a better Just-In-Time (JIT) defect prediction model — the early commit data vs. the recent one —, and conducts a large-scale comparative study to explore an appropriate data collection period. Since there are many possible machine learning algorithms for training defect prediction models, the selection of machine learning algorithms can become a threat to validity. Hence, this study adopts the automatic machine learning method to mitigate the selection bias in the comparative study. The empirical results using 122 open-source software projects prove the trend that the dataset composed of the recent commits would become a better training set for JIT defect prediction models.

  • RVCar: An FPGA-Based Simple and Open-Source Mini Motor Car System with a RISC-V Soft Processor

    Takuto KANAMORI  Takashi ODAN  Kazuki HIROHATA  Kenji KISE  

     
    PAPER

      Pubricized:
    2022/08/09
      Vol:
    E105-D No:12
      Page(s):
    1999-2007

    Deep Neural Network (DNN) is widely used for computer vision tasks, such as image classification, object detection, and segmentation. DNN accelerator on FPGA and especially Convolutional Neural Network (CNN) is a hot topic. More research and education should be conducted to boost this field. A starting point is required to make it easy for new entrants to join this field. We believe that FPGA-based Autonomous Driving (AD) motor cars are suitable for this because DNN accelerators can be used for image processing with low latency. In this paper, we propose an FPGA-based simple and open-source mini motor car system named RVCar with a RISC-V soft processor and a CNN accelerator. RVCar is suitable for the new entrants who want to learn the implementation of a CNN accelerator and the surrounding system. The motor car consists of Xilinx Nexys A7 board and simple parts. All modules except the CNN accelerator are implemented in Verilog HDL and SystemVerilog. The CNN accelerator is converted from a PyTorch model by our tool. The accelerator is written in C++, synthesizable by Vitis HLS, and an easy-to-customize baseline for the new entrants. FreeRTOS is used to implement AD algorithms and executed on the RISC-V soft processor. It helps the users to develop the AD algorithms efficiently. We conduct a case study of the simple AD task we define. Although the task is simple, it is difficult to achieve without image recognition. We confirm that RVCar can recognize objects and make correct decisions based on the results.

  • Optimal Design of Optical Waveguide Devices Utilizing Beam Propagation Method with ADI Scheme Open Access

    Akito IGUCHI  Yasuhide TSUJI  

     
    INVITED PAPER

      Pubricized:
    2022/05/20
      Vol:
    E105-C No:11
      Page(s):
    644-651

    This paper shows structural optimal design of optical waveguide components utilizing an efficient 3D frequency-domain and 2D time-domain beam propagation method (BPM) with an alternating direction implicit (ADI) scheme. Usual optimal design procedure is based on iteration of numerical simulation, and total computational cost of the optimal design mainly depends on the efficiency of numerical analysis method. Since the system matrices are tridiagonal in the ADI-based BPM, efficient analysis and optimal design are available. Shape and topology optimal design shown in this paper is based on optimization of density distribution and sensitivity analysis to the density parameters. Computational methods of the sensitivity are shown in the case of using the 3D semi-vectorial and 2D time-domain BPM based on ADI scheme. The validity of this design approach is shown by design of optical waveguide components: mode converters, and a polarization beam splitter.

  • Analysis of Instantaneous Acoustic Fields Using Fast Inverse Laplace Transform Open Access

    Seiya KISHIMOTO  Naoya ISHIKAWA  Shinichiro OHNUKI  

     
    BRIEF PAPER

      Pubricized:
    2022/03/14
      Vol:
    E105-C No:11
      Page(s):
    700-703

    In this study, a computational method is proposed for acoustic field analysis tasks that require lengthy observation times. The acoustic fields at a given observation time are obtained using a fast inverse Laplace transform with a finite-difference complex-frequency-domain. The transient acoustic field can be evaluated at arbitrary sampling intervals by obtaining the instantaneous acoustic field at the desired observation time using the proposed method.

  • Multi-Target Position and Velocity Estimation Algorithm Based on Time Delay and Doppler Shift in Passive MIMO Radar

    Yao ZHOU  Hairui YU  Wenjie XU  Siyi YAO  Li WANG  Hongshu LIAO  Wanchun LI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/05/18
      Vol:
    E105-A No:11
      Page(s):
    1466-1477

    In this paper, a passive multiple-input multiple-output (MIMO) radar system with widely separated antennas that estimates the positions and velocities of multiple moving targets by utilizing time delay (TD) and doppler shift (DS) measurements is proposed. Passive radar systems can detect targets by using multiple uncoordinated and un-synchronized illuminators and we assume that all the measurements including TD and DS have been known by a preprocessing method. In this study, the algorithm can be divided into three stages. First, based on location information within a certain range and utilizing the DBSCAN cluster algorithm we can obtain the initial position of each target. In the second stage according to the correlation between the TD measurements of each target in a specific receiver and the DSs, we can find the set of DS measurements for each target. Therefore, the initial speed estimated values can be obtained employing the least squares (LS) method. Finally, maximum likelihood (ML) estimation of a first-order Taylor expansion joint TD and DS is applied for a better solution. Extensive simulations show that the proposed algorithm has a good estimation performance and can achieve the Cramér-Rao lower bound (CRLB) under the condition of moderate measurement errors.

  • 4-Cycle-Start-Up Reference-Clock-Less Digital CDR Utilizing TDC-Based Initial Frequency Error Detection with Frequency Tracking Loop Open Access

    Tetsuya IIZUKA  Meikan CHIN  Toru NAKURA  Kunihiro ASADA  

     
    PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    544-551

    This paper proposes a reference-clock-less quick-start-up CDR that resumes from a stand-by state only with a 4-bit preamble utilizing a phase generator with an embedded Time-to-Digital Converter (TDC). The phase generator detects 1-UI time interval by using its internal TDC and works as a self-tunable digitally-controlled delay line. Once the phase generator coarsely tunes the recovered clock period, then the residual time difference is finely tuned by a fine Digital-to-Time Converter (DTC). Since the tuning resolution of the fine DTC is matched by design with the time resolution of the TDC that is used as a phase detector, the fine tuning completes instantaneously. After the initial coarse and fine delay tuning, the feedback loop for frequency tracking is activated in order to improve Consecutive Identical Digits (CID) tolerance of the CDR. By applying the frequency tracking architecture, the proposed CDR achieves more than 100bits of CID tolerance. A prototype implemented in a 65nm bulk CMOS process operates at a 0.9-2.15Gbps continuous rate. It consumes 5.1-8.4mA in its active state and 42μA leakage current in its stand-by state from a 1.0V supply.

  • Evaluation and Comparison of Integer Programming Solvers for Hard Real-Time Scheduling

    Ana GUASQUE  Patricia BALBASTRE  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:10
      Page(s):
    1726-1733

    In order to obtain a feasible schedule of a hard real-time system, heuristic based techniques are the solution of choice. In the last few years, optimization solvers have gained attention from research communities due to their capability of handling large number of constraints. Recently, some works have used integer linear programming (ILP) for solving mono processor scheduling of real-time systems. In fact, ILP is commonly used for static scheduling of multiprocessor systems. However, two main solvers are used to solve the problem indistinctly. But, which one is the best for obtaining a schedulable system for hard real-time systems? This paper makes a comparison of two well-known optimization software packages (CPLEX and GUROBI) for the problem of finding a feasible schedule on monoprocessor hard real-time systems.

  • Non-Destructive Inspection of Twisted Wire in Resin Cover Using Terahertz Wave Open Access

    Masaki NAKAMORI  Yukihiro GOTO  Tomoya SHIMIZU  Nazuki HONDA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1202-1208

    We proposed a new method for evaluating the deterioration of messenger wires by using terahertz waves. We use terahertz time-domain spectroscopy to measure several twisted wire samples with different levels of deterioration. We find that each twisted wire sample had a different distribution of reflection intensity which was due to the wires' twist structure. We show that it is possible to assess the degradation from the straight lines present in the reflection intensity distribution image. Furthermore, it was confirmed that our method can be applied to wire covered with resin.

  • A Satisfiability Algorithm for Deterministic Width-2 Branching Programs Open Access

    Tomu MAKITA  Atsuki NAGAO  Tatsuki OKADA  Kazuhisa SETO  Junichi TERUYAMA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/08
      Vol:
    E105-A No:9
      Page(s):
    1298-1308

    A branching program is a well-studied model of computation and a representation for Boolean functions. It is a directed acyclic graph with a unique root node, some accepting nodes, and some rejecting nodes. Except for the accepting and rejecting nodes, each node has a label with a variable and each outgoing edge of the node has a label with a 0/1 assignment of the variable. The satisfiability problem for branching programs is, given a branching program with n variables and m nodes, to determine if there exists some assignment that activates a consistent path from the root to an accepting node. The width of a branching program is the maximum number of nodes at any level. The satisfiability problem for width-2 branching programs is known to be NP-complete. In this paper, we present a satisfiability algorithm for width-2 branching programs with n variables and cn nodes, and show that its running time is poly(n)·2(1-µ(c))n, where µ(c)=1/2O(c log c). Our algorithm consists of two phases. First, we transform a given width-2 branching program to a set of some structured formulas that consist of AND and Exclusive-OR gates. Then, we check the satisfiability of these formulas by a greedy restriction method depending on the frequency of the occurrence of variables.

  • Design and Implementation of an Edge Computing Testbed to Simplify Experimental Environment Setup

    Hiroaki YAMANAKA  Yuuichi TERANISHI  Eiji KAWAI  Hidehisa NAGANO  Hiroaki HARAI  

     
    PAPER-Dependable Computing

      Pubricized:
    2022/05/27
      Vol:
    E105-D No:9
      Page(s):
    1516-1528

    Running IoT applications on edge computing infrastructures has the benefits of low response times and efficient bandwidth usage. System verification on a testbed is required to deploy IoT applications in production environments. In a testbed, Docker containers are preferable for a smooth transition of tested application programs to production environments. In addition, the round-trip times (RTT) of Docker containers to clients must be ensured, according to the target application's response time requirements. However, in existing testbed systems, the RTTs between Docker containers and clients are not ensured. Thus, we must undergo a large amount of configuration data including RTTs between all pairs of wireless base station nodes and servers to set up a testbed environment. In this paper, we present an edge computing testbed system with simple application programming interfaces (API) for testbed users that ensures RTTs between Docker containers and clients. The proposed system automatically determines which servers to place Docker containers on according to virtual regions and the RTTs specified by the testbed users through APIs. The virtual regions provide reduced size information about the RTTs in a network. In the proposed system, the configuration data size is reduced to one divided by the number of the servers and the command arguments length is reduced to approximately one-third or less, whereas the increased system running time is 4.3s.

  • Interpretation Method of Inversion Phenomena on Backward Transient Scattered Field Components by a Coated Metal Cylinder

    Toru KAWANO  Keiji GOTO  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/02/24
      Vol:
    E105-C No:9
      Page(s):
    389-397

    An interpretation method of inversion phenomena is newly proposed for backward transient scattered field components for both E- and H-polarizations when an ultra-wideband (UWB) pulse wave radiated from a line source is incident on a two-dimensional metal cylinder covered with a lossless dielectric medium layer (coated metal cylinder). A time-domain (TD) asymptotic solution, which is referred to as a TD saddle point technique (TD-SPT), is derived by applying the SPT in evaluating a backward transient scattered field which is expressed by an integral form. The TD-SPT is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series, thereby being able to extract and calculate any backward transient scattered field component from a response waveform. The TD-SPT is useful in understanding the response waveform of a backward transient scattered field by a coated metal cylinder because it can give us the peak value and arrival time of any field component, namely DGO and RGO components, and interpret analytically inversion phenomenon of any field component. The accuracy, validity, and practicality of the TD-SPT are clarified by comparing it with two kinds of reference solutions.

  • Lock-in Pixel Based Time-of-Flight Range Imagers: An Overview Open Access

    Keita YASUTOMI  Shoji KAWAHITO  

     
    INVITED PAPER

      Pubricized:
    2022/01/05
      Vol:
    E105-C No:7
      Page(s):
    301-315

    Time-of-flight (TOF) range imaging is a promising technology for various applications such as touchless control, augmented reality interface, and automotive. The TOF range imagers are classified into two methods: direct TOF with single photo avalanche diodes and indirect TOF with lock-in pixels. The indirect TOF range imagers have advantages in terms of a high spatial resolution and high depth precision because their pixels are simple and can handle many photons at one time. This paper reviews and discusses principal lock-in pixels reported both in the past and present, including circuit-based and charge-modulator-based lock-in pixels. In addition, key technologies that include enhancing sensitivity and background suppression techniques are also discussed.

41-60hit(2217hit)