The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] transient(102hit)

1-20hit(102hit)

  • Measuring SET Pulse Widths in pMOSFETs and nMOSFETs Separately by Heavy Ion and Neutron Irradiation Open Access

    Jun FURUTA  Shotaro SUGITANI  Ryuichi NAKAJIMA  Takafumi ITO  Kazutoshi KOBAYASHI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2024/04/10
      Vol:
    E107-C No:9
      Page(s):
    255-262

    Radiation-induced temporal errors become a significant issue for circuit reliability. We measured the pulse widths of radiation-induced single event transients (SETs) from pMOSFETs and nMOSFETs separately. Test results show that heavy-ion induced SET rates of nMOSFETs were twice as high as those of pMOSFETs and that neutron-induced SETs occurred only in nMOSFETs. It was confirmed that the SET distribution from inverter chains can be estimated using the SET distribution from pMOSFETs and nMOSFETs by considering the difference in load capacitance of the measurement circuits.

  • Method for Estimating Scatterer Information from the Response Waveform of a Backward Transient Scattering Field Using TD-SPT Open Access

    Keiji GOTO  Toru KAWANO  Munetoshi IWAKIRI  Tsubasa KAWAKAMI  Kazuki NAKAZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:8
      Page(s):
    210-222

    This paper proposes a scatterer information estimation method using numerical data for the response waveform of a backward transient scattering field for both E- and H-polarizations when a two-dimensional (2-D) coated metal cylinder is selected as a scatterer. It is assumed that a line source and an observation point are placed at different locations. The four types of scatterer information covered in this paper are the relative permittivity of a surrounding medium, the relative permittivity of a coating medium layer and its thickness, and the radius of a coated metal cylinder. Specifically, a time-domain saddle-point technique (TD-SPT) is used to derive scatterer information estimation formulae from the amplitude intensity ratios (AIRs) of adjacent backward transient scattering field components. The estimates are obtained by substituting the numerical data of the response waveforms of the backward transient scattering field components into the estimation formulae and performing iterative calculations. Furthermore, a minimum thickness of a coating medium layer for which the estimation method is valid is derived, and two kinds of applicable conditions for the estimation method are proposed. The effectiveness of the scatterer information estimation method is verified by comparing the estimates with the set values. The noise tolerance and convergence characteristics of the estimation method and the method of controlling the estimation accuracy are also discussed.

  • Time-Resolved Observation of Organic Light Emitting Diode under Reverse Bias Voltage by Extended Time Domain Reflectometry

    Weisong LIAO  Akira KAINO  Tomoaki MASHIKO  Sou KUROMASA  Masatoshi SAKAI  Kazuhiro KUDO  

     
    BRIEF PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    236-239

    We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.

  • An Interpretation Method on Amplitude Intensities for Response Waveforms of Backward Transient Scattered Field Components by a 2-D Coated Metal Cylinder

    Keiji GOTO  Toru KAWANO  

     
    PAPER

      Pubricized:
    2022/09/29
      Vol:
    E106-C No:4
      Page(s):
    118-126

    In this paper, we propose an interpretation method on amplitude intensities for response waveforms of backward transient scattered field components for both E- and H-polarizations by a 2-D coated metal cylinder. A time-domain (TD) asymptotic solution, which is referred to as a TD Fourier transform method (TD-FTM), is derived by applying the FTM to a backward transient scattered field expressed by an integral form. The TD-FTM is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series. We use the TD-FTM to derive amplitude intensity ratios (AIRs) between adjacent backward transient scattered field components. By comparing the numerical values of the AIRs with those of the influence factors that compose the AIRs, major factor(s) can be identified, thereby allowing detailed interpretation method on the amplitude intensities for the response waveforms of backward transient scattered field components. The accuracy and practicality of the TD-FTM are evaluated by comparing it with three reference solutions. The effectiveness of an interpretation method on the amplitude intensities for response waveforms of backward transient scattered field components is revealed by identifying major factor(s) affecting the amplitude intensities.

  • Interpretation Method of Inversion Phenomena on Backward Transient Scattered Field Components by a Coated Metal Cylinder

    Toru KAWANO  Keiji GOTO  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/02/24
      Vol:
    E105-C No:9
      Page(s):
    389-397

    An interpretation method of inversion phenomena is newly proposed for backward transient scattered field components for both E- and H-polarizations when an ultra-wideband (UWB) pulse wave radiated from a line source is incident on a two-dimensional metal cylinder covered with a lossless dielectric medium layer (coated metal cylinder). A time-domain (TD) asymptotic solution, which is referred to as a TD saddle point technique (TD-SPT), is derived by applying the SPT in evaluating a backward transient scattered field which is expressed by an integral form. The TD-SPT is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series, thereby being able to extract and calculate any backward transient scattered field component from a response waveform. The TD-SPT is useful in understanding the response waveform of a backward transient scattered field by a coated metal cylinder because it can give us the peak value and arrival time of any field component, namely DGO and RGO components, and interpret analytically inversion phenomenon of any field component. The accuracy, validity, and practicality of the TD-SPT are clarified by comparing it with two kinds of reference solutions.

  • Siamese Visual Tracking with Dual-Pipeline Correlated Fusion Network

    Ying KANG  Cong LIU  Ning WANG  Dianxi SHI  Ning ZHOU  Mengmeng LI  Yunlong WU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1702-1711

    Siamese visual tracking, viewed as a problem of max-similarity matching to the target template, has absorbed increasing attention in computer vision. However, it is a challenge for current Siamese trackers that the demands of balance between accuracy in real-time tracking and robustness in long-time tracking are hard to meet. This work proposes a new Siamese based tracker with a dual-pipeline correlated fusion network (named as ADF-SiamRPN), which consists of one initial template for robust correlation, and the other transient template with the ability of adaptive feature optimal selection for accurate correlation. By the promotion from the learnable correlation-response fusion network afterwards, we are in pursuit of the synthetical improvement of tracking performance. To compare the performance of ADF-SiamRPN with state-of-the-art trackers, we conduct lots of experiments on benchmarks like OTB100, UAV123, VOT2016, VOT2018, GOT-10k, LaSOT and TrackingNet. The experimental results of tracking demonstrate that ADF-SiamRPN outperforms all the compared trackers and achieves the best balance between accuracy and robustness.

  • Transient Characteristics on Super-Steep Subthreshold Slope “PN-Body Tied SOI-FET” — Simulation and Pulse Measurement — Open Access

    Takayuki MORI  Jiro IDA  Hiroki ENDO  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2020/04/23
      Vol:
    E103-C No:10
      Page(s):
    533-542

    In this study, the transient characteristics on the super-steep subthreshold slope (SS) of a PN-body tied (PNBT) silicon-on-insulator field-effect transistor (SOI-FET) were investigated using technology computer-aided design and pulse measurements. Carrier charging effects were observed on the super-steep SS PNBT SOI-FET. It was found that the turn-on delay time decreased to nearly zero when the gate overdrive-voltage was set to 0.1-0.15 V. Additionally, optimizing the gate width improved the turn-on delay. This has positive implications for the low speed problems of this device. However, long-term leakage current flows on turn-off. The carrier lifetime affects the leakage current, and the device parameters must be optimized to realize both a high on/off ratio and high-speed operation.

  • Ultra-Low Quiescent Current LDO with FVF-Based Load Transient Enhanced Circuit Open Access

    Kenji MII  Akihito NAGAHAMA  Hirobumi WATANABE  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/05/28
      Vol:
    E103-C No:10
      Page(s):
    466-471

    This paper proposes an ultra-low quiescent current low-dropout regulator (LDO) with a flipped voltage follower (FVF)-based load transient enhanced circuit for wireless sensor network (WSN). Some characteristics of an FVF are low output impedance, low voltage operation, and simple circuit configuration [1]. In this paper, we focus on the characteristics of low output impedance and low quiescent current. A load transient enhanced circuit based on an FVF circuit configuration for an LDO was designed in this study. The proposed LDO, including the new circuit, was fabricated in a 0.6 µm CMOS process. The designed LDO achieved an undershoot of 75 mV under experimental conditions of a large load transient of 100 µA to 10 mA and a current slew rate (SR) of 1 µs. The quiescent current consumed by the LDO at no load operation was 204 nA.

  • Exponentially Weighted Distance-Based Detection for Radiometric Identification

    Yong Qiang JIA  Lu GAN  Hong Shu LIAO  

     
    LETTER-Measurement Technology

      Vol:
    E100-A No:12
      Page(s):
    3086-3089

    Radio signals show characteristics of minute differences, which result from various idiosyncratic hardware properties between different radio emitters. A robust detector based on exponentially weighted distances is proposed to detect the exact reference instants of the burst communication signals. Based on the exact detection of the reference instant, in which the radio emitter finishes the power-up ramp and enters the first symbol of its preamble, the features of the radio fingerprint can be extracted from the transient signal section and the steady-state signal section for radiometric identification. Experiments on real data sets demonstrate that the proposed method not only has a higher accuracy that outperforms correlation-based detection, but also a better robustness against noise. The comparison results of different detectors for radiometric identification indicate that the proposed detector can improve the classification accuracy of radiometric identification.

  • Experimental Study on CDMA GaAs HBT MMIC Power Amplifier Layout Design for Reducing Turn-On Delay in Transient Response

    Kazuya YAMAMOTO  Miyo MIYASHITA  Takayuki MATSUZUKA  Tomoyuki ASADA  Kazunobu FUJII  Satoshi SUZUKI  Teruyuki SHIMURA  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:6
      Page(s):
    618-631

    This paper describes, for the first time, an experimental study on the layout design considerations of GaAs HBT MMIC switchable-amplifier-chain-based power amplifiers (SWPAs) for CDMA handsets. The transient response of the quiescent current and output power (Pout) in GaAs HBT power amplifiers that consist of a main chain and a sub-chain is often affected by a thermal coupling between power stages and their bias circuits in the same chain or a thermal coupling between power stages and/or their bias circuits in different chains. In particular, excessively strong thermal coupling inside the MMIC SWPA causes failure in 3GPP-compliant inner loop power control tests. An experimental study reveals that both the preheating in the main/sub-chains and appropriate thermal coupling inside the main chain are very effective in reducing the turn-on delay for the two-parallel-amplifier-chain topology; for example, i) the sub-power stage is arranged near the main power stage, ii) the sub-driver stage is placed near the main driver stage and iii) the main driver bias circuit is placed near the main power stage and the sub-power stage. The SWPA operating in Band 9 (1749.9 to 1784.9 MHz), which was designed and fabricated from the foregoing considerations, shows a remarkable improvement in the Pout turn-on delay: a reduced power level error of 0.74 dB from turn-off to turn-on in the sub-amplifier chain and a reduced power level error of over 0.30 dB from turn-off to turn-on in the main amplifier chain. The main RF power measurements conducted with a 3.4-V supply voltage and a Band 9 WCDMA HSDPA modulated signal are as follows. The SWPA delivers a Pout of 28.5 dBm, a power gain (Gp) of 28 dB, and a PAE of 39% while restricting the ACLR1 to less than -40 dBc in the main amplifier chain. In the sub-amplifier chain, 17 dBm of Pout, 23.5 dB of Gp, and 27% of PAE are obtained at the same ACLR1 level.

  • Fabrication of Bacteriorhodopsin (bR) Thin Films by Wire-Bar Coating Technique and Evaluation of Transient Photocurrent Response in Its bR Photocells

    Toshiki YAMADA  Yoshihiro HARUYAMA  Katsuyuki KASAI  Takahiro KAJI  Yukihiro TOMINARI  Shukichi TANAKA  Akira OTOMO  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    133-136

    We prepared a bR thin film by the wire-bar coating technique, and investigated the transient photo-current characteristics of the bR photocell. The transient photo-current signal of bR photocells prepared by the wire-bar coating technique and the dip coating technique was compared. An almost identical transient photo-current signal intensity was obtained both for the wire-bar coating technique and dip coating technique, while the thickness of bR thin film prepared by the wire-bar coating technique is slightly thinner than that prepared by the dip-coating technique. Transparent conductive oxide dependence of the transient photo-current signal is almost the same dependence for the bR photocells with a bR thin film prepared by both techniques. Application of the wire-bar coating technique is significant from the viewpoints of the bR's sample consumption as well as simplicity of sample preparation.

  • An Adaptive Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations

    Xiao WU  Zhou JIN  Dan NIU  Yasuaki INOUE  

     
    PAPER-Nonlinear Problems

      Vol:
    E100-A No:2
      Page(s):
    619-628

    An adaptive time-step control method is proposed for the damped pseudo-transient analysis (DPTA) method. The new method is based on the idea of switched evolution/relaxation (SER), which can automatically adapt the step size for different circuit states. Considering the number of iterations needed for the convergence of Newton-Raphson (NR) method and the states in previous steps, the proposed method can automatically optimize the time-step size. Using numerical examples, the new method is proven to improve robustness, simulation efficiency, and the convergence of DPTA for solving nonlinear DC circuit equations.

  • Computer Power Supply Transient Response Improvement by Power Consumption Prediction Procedure Using Performance Counters

    Shinichi KAWAGUCHI  Toshiaki YACHI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E98-B No:12
      Page(s):
    2382-2388

    As the use of information technology is rapidly expanding, the power consumption of IT equipment is becoming an important social issue. As such, the power supply of IT equipment must provide various power saving measures through advanced features. A digitally controlled power supply is attractive for satisfying this requirement due to its flexibility and advanced management functionality. However, a digitally controlled power supply has issues with its transient response performance because the conversion time of the analog-digital converter and the time required for digital processing in the digital controller adversely affect the dynamic characteristics. The present paper introduces a new approach that can improve the transient response performance of the digital point-of-load (POL) power supplies of computer processors. The resulting power systems use feed-forward transient control, in addition to the general voltage regulation feedback control loop, to improve their dynamic characteristics. On the feed-forward control path, the processor workload information is supplied to the power supply controller from the processor. The power supply controller uses the workload information to predict the power load change and generates an auxiliary control to improve the transient response performance. As the processor workload information, the processor-integrated performance counter values are sent to the power supply controller via a hardware interface. The processor power consumption prediction equation is modeled using the moving average model, which uses performance counter values of several past steps. The prediction equation parameters are defined by multiple regression analysis using the measured CPU power consumption data and experimentally obtained performance counter information. The analysis reveals that the optimum parameters change with time during transient periods. The modeled equation well explains the processor power load change. The measured CPU power consumption profile is confirmed to be accurately replicated by the prediction for a period of 200ns. Using the power load change prediction model, circuit simulations of the feed-forward transient control are conducted. It is validated that the proposed approach improves power supply transient response under some practical server workloads.

  • A Self-Recoverable, Frequency-Aware and Cost-Effective Robust Latch Design for Nanoscale CMOS Technology

    Aibin YAN  Huaguo LIANG  Zhengfeng HUANG  Cuiyun JIANG  Maoxiang YI  

     
    PAPER-Electronic Circuits

      Vol:
    E98-C No:12
      Page(s):
    1171-1178

    In this paper, a self-recoverable, frequency-aware and cost-effective robust latch (referred to as RFC) is proposed in 45nm CMOS technology. By means of triple mutually feedback Muller C-elements, the internal nodes and output node of the latch are self-recoverable from single event upset (SEU), i.e. particle striking induced logic upset, regardless of the energy of the striking particle. The proposed robust latch offers a much wider spectrum of working clock frequency on account of a smaller delay and insensitivity to high impedance state. The proposed robust latch performs with lower costs regarding power and area than most of the compared latches. SPICE simulation results demonstrate that the area-power-delay product is 73.74% saving on average compared with previous radiation hardened latches.

  • An Effective Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations

    Xiao WU  Zhou JIN  Dan NIU  Yasuaki INOUE  

    This Paper was withdrawn by the authors. The withdrawal procedure has been completed on July 19, 2016.
     
    PAPER-Nonlinear Problems

      Vol:
    E98-A No:11
      Page(s):
    2274-2282

    An effective time-step control method is proposed for the damped pseudo-transient analysis (DPTA). This method is based on the idea of the switched evolution/relaxation method which can automatically adapt the step size for different circuit states. Considering the number of iterations needed for the convergence of the Newton-Raphson method, the new method adapts the suitable time-step size with the status of previous steps. By numerical examples, it is proved that this method can improve the simulation efficiency and convergence for the DPTA method to solve nonlinear DC circuits.

  • Characteristics of Small Gap Discharge Events and Their EMI Effects

    Masamitsu HONDA  Satoshi ISOFUKU  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1220-1226

    This paper shows that the induced peak voltage on the short monopole antenna by the EM field radiated from a small gap discharge when the gap width was experimentally changed from 10 to 360µm was not directly proportional to the discharge voltage between the gap. It was found that the 10mm short monopole antenna induced peak voltage had a peak value between 40 and 60µm gap width.

  • Transient Response Improvement of DC-DC Buck Converter by a Slope Adjustable Triangular Wave Generator

    Shu WU  Yasunori KOBORI  Nobukazu TSUKIJI  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E98-B No:2
      Page(s):
    288-295

    This paper describes a simple-yet-effective control method for a DC-DC buck converter with voltage mode control (VMC), with a triangular wave generator (TWG) which regulates the slope of triangular wave based on the input and output voltages of the converter. Using the proposed TWG, both the load and line transient responses are improved. Since the TWG provides a line feed-forward control for the line transient response, it increases the open-loop bandwidth, and then better dynamic performance is obtained. Additional required circuit components are only a voltage controlled linear resistor (VCR) and a voltage controlled current source (VCCS). Compared with the conventional voltage control, the proposed method significantly improves the line and load transient responses. Furthermore this triangular wave slope regulation scheme is simple compared to digital feed-forward control scheme that requires non-linear calculation. Simulation results shows the effectiveness of the proposed method.

  • Tracking Analysis of Adaptive Filters with Error and Matrix Data Nonlinearities

    Wemer M. WEE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1659-1673

    We consider a unified approach to the tracking analysis of adaptive filters with error and matrix data nonlinearities. Using energy-conservation arguments, we not only derive earlier results in a unified manner, but we also obtain new performance results for more general adaptive algorithms without requiring the restriction of the regression data to a particular distribution. Numerical simulations support the theoretical results.

  • SET Pulse-Width Measurement Suppressing Pulse-Width Modulation and Within-Die Process Variation Effects

    Ryo HARADA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1461-1467

    This paper presents a measurement circuit structure for capturing SET pulse-width suppressing pulse-width modulation and within-die process variation effects. For mitigating pulse-width modulation while maintaining area efficiency, the proposed circuit uses massively parallelized short inverter chains as a target circuit. Moreover, for each inverter chain on each die, pulse-width calibration is performed. In measurements, narrow SET pulses ranging 5ps to 215ps were obtained. We confirm that an overestimation of pulse-width may happen when ignoring die-to-die and within-die variation of the measurement circuit. Our evaluation results thus point out that calibration for within-die variation in addition to die-to-die variation of the measurement circuit is indispensable.

  • Effective Implementation and Embedding Algorithms of CEPTA Method for Finding DC Operating Points

    Zhou JIN  Xiao WU  Dan NIU  Yasuaki INOUE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2524-2532

    Recently, the compound element pseudo transient analysis, CEPTA, method is regarded as an efficient practical method to find DC operating points of nonlinear circuits when the Newton-Raphson method fails. In the previous CEPTA method, an effective SPICE3 implementation algorithm was proposed without expanding the Jacobian matrix. However the limitation of step size was not well considered. Thus, the non-convergence problem occurs and the simulation efficiency is still a big challenge for current LSI nonlinear cicuits, especially for some practical large-scale circuits. Therefore, in this paper, we propose a new SPICE3 implementation algorithm and an embedding algorithm, which is where to insert the pseudo capacitors, for the CEPTA method. The proposed implementation algorithm has no limitation for step size and can significantly improve simulation efficiency. Considering the existence of various types of circuits, we extend some possible embedding positions. Numerical examples demonstrate the improvement of simulation efficiency and convergence performance.

1-20hit(102hit)