The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

5061-5080hit(42807hit)

  • Extension and Performance/Accuracy Formulation for Optimal GeAr-Based Approximate Adder Designs

    Ken HAYAMIZU  Nozomu TOGAWA  Masao YANAGISAWA  Youhua SHI  

     
    PAPER

      Vol:
    E101-A No:7
      Page(s):
    1014-1024

    Approximate computing is a promising solution for future energy-efficient designs because it can provide great improvements in performance, area and/or energy consumption over traditional exact-computing designs for non-critical error-tolerant applications. However, the most challenging issue in designing approximate circuits is how to guarantee the pre-specified computation accuracy while achieving energy reduction and performance improvement. To address this problem, this paper starts from the state-of-the-art general approximate adder model (GeAr) and extends it for more possible approximate design candidates by relaxing the design restrictions. And then a maximum-error-distance-based performance/accuracy formulation, which can be used to select the performance/energy-accuracy optimal design from the extended design space, is proposed. Our evaluation results show the effectiveness of the proposed method in terms of area overhead, performance, energy consumption, and computation accuracy.

  • Reconstruction of Feedback Polynomial of Synchronous Scrambler Based on Triple Correlation Characteristics of M-Sequences

    Shu nan HAN  Min ZHANG  Xin hao LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/01/16
      Vol:
    E101-B No:7
      Page(s):
    1723-1732

    For the reconstruction of the feedback polynomial of a synchronous scrambler placed after a convolutional encoder, the existing algorithms require the prior knowledge of a dual word of the convolutional code. To address the case of a dual word being unknown, a new algorithm for the reconstruction of the feedback polynomial based on triple correlation characteristic of an m-sequence is proposed. First, the scrambled convolutional code sequence is divided into bit blocks; the product of the scrambled bit blocks with a dual word is proven to be an m-sequence with the same period as the synchronous scrambler. Second, based on the triple correlation characteristic of the generated m-sequence, a dual word is estimated; the generator polynomial of the generated m-sequence is computed by two locations of the triple correlation peaks. Finally, the feedback polynomial is reconstructed using the generator polynomial of the generated m-sequence. As the received sequence may contain bit errors, a method for detecting triple correlation peaks based on the constant false-alarm criterion is elaborated. Experimental results show that the proposed algorithm is effective. Ulike the existing algorithms available, there is no need to know a dual word a priori and the reconstruction result is more accurate. Moreover, the proposed algorithm is robust to bit errors.

  • High Speed and High Responsivity Avalanche Photodiode Fabricated by Standard CMOS Process in Blue Wavelength Region Open Access

    Koichi IIYAMA  Takeo MARUYAMA  Ryoichi GYOBU  Takuya HISHIKI  Toshiyuki SHIMOTORI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    574-580

    Quadrant silicon avalanche photodiodes (APDs) were fabricated by standard 0.18µm CMOS process, and were characterized at 405nm wavelength for Blu-ray applications. The size of each APD element is 50×50µm2. The dark current was 10pA at low bias voltage, and low crosstalk of about -80dB between adjacent APD elements was achieved. Although the responsivity is less than 0.1A/W at low bias voltage, the responsivity is enhanced to more than 1A/W at less than 10V bias voltage due to avalanche amplification. The wide bandwidth of 1.5GHz was achieved with the responsivity of more than 1A/W, which is limited by the capacitance of the APD. We believe that the fabricated quadrant APD is a promising photodiode for multi-layer Blu-ray system.

  • Learners' Self Checking and Its Effectiveness in Conceptual Data Modeling Exercises

    Takafumi TANAKA  Hiroaki HASHIURA  Atsuo HAZEYAMA  Seiichi KOMIYA  Yuki HIRAI  Keiichi KANEKO  

     
    PAPER

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1801-1810

    Conceptual data modeling is an important activity in database design. However, it is difficult for novice learners to master its skills. In the conceptual data modeling, learners are required to detect and correct errors of their artifacts by themselves because modeling tools do not assist these activities. We call such activities self checking, which is also an important process. However, the previous research did not focus on it and/or the data collection of self checks. The data collection of self checks is difficult because self checking is an internal activity and self checks are not usually expressed. Therefore, we developed a method to help learners express their self checks by reflecting on their artifact making processes. In addition, we developed a system, KIfU3, which implements this method. We conducted an evaluation experiment and showed the effectiveness of the method. From the experimental results, we found out that (1) the novice learners conduct self checks during their conceptual data modeling tasks; (2) it is difficult for them to detect errors in their artifacts; (3) they cannot necessarily correct the errors even if they could identify them; and (4) there is no relationship between the numbers of self checks by the learners and the quality of their artifacts.

  • Reliable Position Estimation by Parallelized Processing in Kinematic Positioning for Single Frequency GNSS Receiver

    Hiromi IN  Hiroyuki HATANO  Masahiro FUJII  Atsushi ITO  Yu WATANABE  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:7
      Page(s):
    1083-1091

    Location information is meaningful information for future ITS (Intelligent Transport Systems) world. Especially, the accuracy of the information is required because the accuracy decides the quality of ITS services. For realization of high precision positioning, Kinematic positioning technique has been attracting attention. The Kinematic positioning requires the configuration of many positioning parameters. However, the configuration is difficult because optimal parameter differs according to user's environment. In this paper, we will propose an estimation method of optimal parameter according to the environment. Further, we will propose an elimination method of unreliable positioning results. Hereby, we can acquire extensively only the reliable positioning results. By using the actual vehicle traveling data, the ability and the applicable range of the proposed method will be shown. The result will show that our proposed method improves the acquision rate of reliable positioning results and mitigates the acquision rate of the unreliable positioning results.

  • Representation Learning for Users' Web Browsing Sequences

    Yukihiro TAGAMI  Hayato KOBAYASHI  Shingo ONO  Akira TAJIMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1870-1879

    Modeling user activities on the Web is a key problem for various Web services, such as news article recommendation and ad click prediction. In our work-in-progress paper[1], we introduced an approach that summarizes each sequence of user Web page visits using Paragraph Vector[3], considering users and URLs as paragraphs and words, respectively. The learned user representations are used among the user-related prediction tasks in common. In this paper, on the basis of analysis of our Web page visit data, we propose Backward PV-DM, which is a modified version of Paragraph Vector. We show experimental results on two ad-related data sets based on logs from Web services of Yahoo! JAPAN. Our proposed method achieved better results than those of existing vector models.

  • Analysis of a Wireless Power Transfer System by the Impedance Expansion Method Using Fourier Basis Functions

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/01/18
      Vol:
    E101-B No:7
      Page(s):
    1708-1715

    The impedance expansion method (IEM), which has been previously proposed by the authors, is a circuit-modeling technique for electrically-very-small devices. This paper provides a new idea on the principle of undesired radiation in wireless power transfer systems by employing IEM. In particular, it is shown that the undesired radiation is due to equivalent infinitesimal dipoles and loops of the currents on the coils.

  • IEICE Transactions on Communications: Editor's Message Open Access

    Makoto TAROMARU  

     
    MESSAGE

      Vol:
    E101-B No:6
      Page(s):
    1346-1346
  • Joint Optimization of FeICIC and Spectrum Allocation for Spectral and Energy Efficient Heterogeneous Networks

    Xuefang NIE  Yang WANG  Liqin DING  Jiliang ZHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1462-1475

    Cellular heterogeneous networks (HetNets) with densely deployed small cells can effectively boost network capacity. The co-channel interference and the prominent energy consumption are two crucial issues in HetNets which need to be addressed. Taking the traffic variations into account, this paper proposes a theoretical framework to analyze spectral efficiency (SE) and energy efficiency (EE) considering jointly further-enhanced inter-cell interference coordination (FeICIC) and spectrum allocation (SA) via a stochastic geometric approach for a two-tier downlink HetNet. SE and EE are respectively derived and validated by Monte Carlo simulations. To create spectrum and energy efficient HetNets that can adapt to traffic demands, a non-convex optimization problem with the power control factor, resource partitioning fraction and number of subchannels for the SE and EE tradeoff is formulated, based on which, an iterative algorithm with low complexity is proposed to achieve the sub-optimal solution. Numerical results confirm the effectiveness of the joint FeICIC and SA scheme in HetNets. Meanwhile, a system design insight on resource allocation for the SE and EE tradeoff is provided.

  • Two-Round Witness Hiding Protocol

    Qihua NIU  Tongjiang YAN  Yuhua SUN  Chun'e ZHAO  Fei TANG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    953-960

    The concept of witness hiding was proposed by Feige and Shamir as a natural relaxation of zero-knowledge. Prior constructions of witness hiding protocol for general hard distribution on NP language consist of at least three rounds. In this paper we construct a two-round witness hiding protocol for all hard distributions on NP language. Our construction is based on two primitives: point obfuscation and adaptive witness encryption scheme.

  • Computational Complexity and Polynomial Time Procedure of Response Property Problem in Workflow Nets

    Muhammad Syafiq BIN AB MALEK  Mohd Anuaruddin BIN AHMADON  Shingo YAMAGUCHI  

     
    PAPER-Formal Approaches

      Pubricized:
    2018/03/16
      Vol:
    E101-D No:6
      Page(s):
    1503-1510

    Response property is a kind of liveness property. Response property problem is defined as follows: Given two activities α and β, whenever α is executed, is β always executed after that? In this paper, we tackled the problem in terms of Workflow Petri nets (WF-nets for short). Our results are (i) the response property problem for acyclic WF-nets is decidable, (ii) the problem is intractable for acyclic asymmetric choice (AC) WF-nets, and (iii) the problem for acyclic bridge-less well-structured WF-nets is solvable in polynomial time. We illustrated the usefulness of the procedure with an application example.

  • Data Augmented Dynamic Time Warping for Skeletal Action Classification

    Ju Yong CHANG  Yong Seok HEO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1562-1571

    We present a new action classification method for skeletal sequence data. The proposed method is based on simple nonparametric feature matching without a learning process. We first augment the training dataset to implicitly construct an exponentially increasing number of training sequences, which can be used to improve the generalization power of the proposed action classifier. These augmented training sequences are matched to the test sequence with the relaxed dynamic time warping (DTW) technique. Our relaxed formulation allows the proposed method to work faster and with higher efficiency than the conventional DTW-based method using a non-augmented dataset. Experimental results show that the proposed approach produces effective action classification results for various scales of real datasets.

  • Super-Resolution Time of Arrival Estimation Using Random Resampling in Compressed Sensing

    Masanari NOTO  Fang SHANG  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1513-1520

    There is a strong demand for super-resolution time of arrival (TOA) estimation techniques for radar applications that can that can exceed the theoretical limits on range resolution set by frequency bandwidth. One of the most promising solutions is the use of compressed sensing (CS) algorithms, which assume only the sparseness of the target distribution but can achieve super-resolution. To preserve the reconstruction accuracy of CS under highly correlated and noisy conditions, we introduce a random resampling approach to process the received signal and thus reduce the coherent index, where the frequency-domain-based CS algorithm is used as noise reduction preprocessing. Numerical simulations demonstrate that our proposed method can achieve super-resolution TOA estimation performance not possible with conventional CS methods.

  • Accurate Target Motion Analysis from a Small Measurement Set Using RANSAC

    Hyunhak SHIN  Bonhwa KU  Wooyoung HONG  Hanseok KO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/02/23
      Vol:
    E101-D No:6
      Page(s):
    1711-1714

    Most conventional research on target motion analysis (TMA) based on least squares (LS) has focused on performing asymptotically unbiased estimation with inaccurate measurements. However, such research may often yield inaccurate estimation results when only a small set of measurement data is used. In this paper, we propose an accurate TMA method even with a small set of bearing measurements. First, a subset of measurements is selected by a random sample consensus (RANSAC) algorithm. Then, LS is applied to the selected subset to estimate target motion. Finally, to increase accuracy, the target motion estimation is refined through a bias compensation algorithm. Simulated results verify the effectiveness of the proposed method.

  • Evaluations for Estimation Method of the Distributed Array Antenna (DAA) Radiation Pattern by Experimental Analysis

    Daisuke GOTO  Fumihiro YAMASHITA  Kouhei SUZAKI  Hideya SO  Yoshinori SUZUKI  Kiyoshi KOBAYASHI  Naoki KITA  

     
    PAPER-Satellite Communications

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1494-1502

    We target the estimation of antenna patterns of distributed array antenna (DAA) systems for satellite communications. Measuring DAA patterns is very difficult because of the large antenna separations involved, more than several tens of wavelengths. Our goal is to elucidate the accuracy of the DAA pattern estimation method whose inputs are actual antenna pattern data and array factors by evaluating their similarity to actually measured DAA radiation patterns. Experiments on two Ku band parabolic antennas show that their patterns can be accurately estimated even if we change the conditions such as frequency, antenna arrangement and polarization. Evaluations reveal that the method has high estimation accuracy since its errors are better than 1dB. We conclude the method is useful for the accurate estimation of DAA patterns.

  • Processing Multiple-User Location-Based Keyword Queries

    Yong WANG  Xiaoran DUAN  Xiaodong YANG  Yiquan ZHANG  Xiaosong ZHANG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1552-1561

    Geosocial networking allows users to interact with respect to their current locations, which enables a group of users to determine where to meet. This calls for techniques that support processing of Multiple-user Location-based Keyword (MULK) queries, which return a set of Point-of-Interests (POIs) that are 'close' to the locations of the users in a group and can provide them with potential options at the lowest expense (e.g., minimizing travel distance). In this paper, we formalize the MULK query and propose a dynamic programming-based algorithm to find the optimal result set. Further, we design two approximation algorithms to improve MULK query processing efficiency. The experimental evaluations show that our solutions are feasible and efficient under various parameter settings.

  • Joint User Experience and Energy Efficiency Optimization in Heterogeneous Small Cell Network

    Liangrui TANG  Hailin HU  Jiajia ZHU  Shiyu JI  Yanhua HE  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/08
      Vol:
    E101-B No:6
      Page(s):
    1453-1461

    Heterogeneous Small Cell Network (HSCN) will have wide application given its ability to improve system capacity and hot spot coverage. In order to increase the efficiency of spectrum and energy, a great deal of research has been carried out on radio resource management in HSCN. However, it is a remarkable fact that the user experience in terms of traffic rate demands has been neglected in existing research with excessive concentration on network capacity and energy efficiency. In this paper, we redefined the energy efficiency (EE) and formulate the joint optimization problem of user experience and energy efficiency maximization into a mixed integer non-linear programming (MINLP) problem. After reformulating the optimization problem, the joint subchannel (SC) allocation and power control algorithm is proposed with the help of cluster method and genetic algorithm. Simulation results show that the joint SC allocation and power control algorithm proposed has better performance in terms of user experience and energy consumption than existing algorithms.

  • On Maximizing the Lifetime of Wireless Sensor Networks in 3D Vegetation-Covered Fields

    Wenjie YU  Xunbo LI  Zhi ZENG  Xiang LI  Jian LIU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1677-1681

    In this paper, the problem of lifetime extension of wireless sensor networks (WSNs) with redundant sensor nodes deployed in 3D vegetation-covered fields is modeled, which includes building communication models, network model and energy model. Generally, such a problem cannot be solved by a conventional method directly. Here we propose an Artificial Bee Colony (ABC) based optimal grouping algorithm (ABC-OG) to solve it. The main contribution of the algorithm is to find the optimal number of feasible subsets (FSs) of WSN and assign them to work in rotation. It is verified that reasonably grouping sensors into FSs can average the network energy consumption and prolong the lifetime of the network. In order to further verify the effectiveness of ABC-OG, two other algorithms are included for comparison. The experimental results show that the proposed ABC-OG algorithm provides better optimization performance.

  • Uplink Multiuser MIMO Access with Probe Packets in Distributed Wireless Networks

    Satoshi DENNO  Yusuke MURAKAMI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/15
      Vol:
    E101-B No:6
      Page(s):
    1443-1452

    This paper proposes a novel access technique that enables uplink multiuser multiple input multiple output (MU-MIMO) access with small overhead in distributed wireless networks. The proposed access technique introduces a probe packet that is sent to all terminals to judge whether they have the right to transmit their signals or not. The probe packet guarantees high quality MU-MIMO signal transmission when a minimum mean square error (MMSE) filter is applied at the access point, which results in high frequency utilization efficiency. Computer simulation reveals that the proposed access achieves more than twice of the capacity obtained by the traditional carrier sense multiple access/collision avoidance (CSMA/CA) with a single user MIMO, when the access point with 5 antennas is surrounded by the terminals with 2 antennas.

  • Co-Propagation with Distributed Seeds for Salient Object Detection

    Yo UMEKI  Taichi YOSHIDA  Masahiro IWAHASHI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/09
      Vol:
    E101-D No:6
      Page(s):
    1640-1647

    In this paper, we propose a method of salient object detection based on distributed seeds and a co-propagation of seed information. Salient object detection is a technique which estimates important objects for human by calculating saliency values of pixels. Previous salient object detection methods often produce incorrect saliency values near salient objects in the case of images which have some objects, called the leakage of saliencies. Therefore, a method based on a co-propagation, the scale invariant feature transform, the high dimensional color transform, and machine learning is proposed to reduce the leakage. Firstly, the proposed method estimates regions clearly located in salient objects and the background, which are called as seeds and resultant seeds, are distributed over images. Next, the saliency information of seeds is simultaneously propagated, which is then referred as a co-propagation. The proposed method can reduce the leakage caused because of the above methods when the co-propagation of each information collide with each other near the boundary. Experiments show that the proposed method significantly outperforms the state-of-the-art methods in mean absolute error and F-measure, which perceptually reduces the leakage.

5061-5080hit(42807hit)