The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ACH(1072hit)

541-560hit(1072hit)

  • Short Term Cell-Flipping Technique for Mitigating SNM Degradation Due to NBTI

    Yuji KUNITAKE  Toshinori SATO  Hiroto YASUURA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    520-529

    Negative Bias Temperature Instability (NBTI) is one of the major reliability problems in advanced technologies. NBTI causes threshold voltage shift in a PMOS transistor. When the PMOS transistor is biased to negative voltage, threshold voltage shifts to negatively. On the other hand, the threshold voltage recovers if the PMOS transistor is positively biased. In an SRAM cell, due to NBTI, threshold voltage degrades in the load PMOS transistors. The degradation has the impact on Static Noise Margin (SNM), which is a measure of read stability of a 6-T SRAM cell. In this paper, we discuss the relationship between NBTI degradation in an SRAM cell and the dynamic stress and recovery condition. There are two important characteristics. One is a stress probability, which is defined as the rate that the PMOS transistor is negatively biased. The other is a stress and recovery cycle, which is defined as the switching interval of an SRAM value. In our observations, in order to mitigate the NBTI degradation, the stress probability should be small and the stress and recovery cycle should be shorter than 10 msec. Based on the observations, we propose a novel cell-flipping technique, which makes the stress probability close to 50%. In addition, we show results of the case studies, which apply the cell-flipping technique to register file and cache memories.

  • Cache Based Motion Compensation Architecture for Quad-HD H.264/AVC Video Decoder

    Jinjia ZHOU  Dajiang ZHOU  Gang HE  Satoshi GOTO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    439-447

    In this paper, we present a cache based motion compensation (MC) architecture for Quad-HD H.264/AVC video decoder. With the significantly increased throughput requirement, VLSI design for MC is greatly challenged by the huge area cost and power consumption. Moreover, the long memory system latency leads to performance drop of the MC pipeline. To solve these problems, three optimization schemes are proposed in this work. Firstly, a high-performance interpolator based on Horizontal-Vertical Expansion and Luma-Chroma Parallelism (HVE-LCP) is proposed to efficiently increase the processing throughput to at least over 4 times as the previous designs. Secondly, an efficient cache memory organization scheme (4S×4) is adopted to improve the on-chip memory utilization, which contributes to memory area saving of 25% and memory power saving of 3949%. Finally, by employing a Split Task Queue (STQ) architecture, the cache system is capable of tolerating much longer latency of the memory system. Consequently, the cache idle time is saved by 90%, which contributes to reducing the overall processing time by 2440%. When implemented with SMIC 90 nm process, this design costs a logic gate count and on-chip memory of 108.8 k and 3.1 kB respectively. The proposed MC architecture can support real-time processing of 3840×2160@60 fps with less than 166 MHz.

  • A Novel Cache Replacement Policy via Dynamic Adaptive Insertion and Re-Reference Prediction

    Xi ZHANG  Chongmin LI  Zhenyu LIU  Haixia WANG  Dongsheng WANG  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    468-476

    Previous research illustrates that LRU replacement policy is not efficient when applications exhibit a distant re-reference interval. Recently RRIP policy is proposed to improve the performance for such kind of workloads. However, the lack of access recency information in RRIP confuses the replacement policy to make the accurate prediction. To enhance the robustness of RRIP for recency-friendly workloads, we propose an Dynamic Adaptive Insertion and Re-reference Prediction (DAI-RRP) policy which evicts data based on both re-reference prediction value and the access recency information. DAI-RRP makes adaptive adjustment on insertion position and prediction value for different access patterns, which makes the policy robust across different workloads and different phases. Simulation results show that DAI-RRP outperforms LRU and RRIP. For a single-core processor with a 1 MB 16-way set last-level cache (LLC), DAI-RRP reduces CPI over LRU and Dynamic RRIP by an average of 8.1% and 2.7% respectively. Evaluations on quad-core CMP with a 4 MB shared LLC show that DAI-RRP outperforms LRU and Dynamic RRIP (DRRIP) on the weighted speedup metric by an average of 8.1% and 15.7% respectively. Furthermore, compared to LRU, DAI-RRP consumes the similar hardware for 16-way cache, or even less hardware for high-associativity cache. In summary, the proposed policy is practical and can be easily integrated into existing hardware approximations of LRU.

  • Integration of Multiple Bilingually-Trained Segmentation Schemes into Statistical Machine Translation

    Michael PAUL  Andrew FINCH  Eiichiro SUMITA  

     
    PAPER-Natural Language Processing

      Vol:
    E94-D No:3
      Page(s):
    690-697

    This paper proposes an unsupervised word segmentation algorithm that identifies word boundaries in continuous source language text in order to improve the translation quality of statistical machine translation (SMT) approaches. The method can be applied to any language pair in which the source language is unsegmented and the target language segmentation is known. In the first step, an iterative bootstrap method is applied to learn multiple segmentation schemes that are consistent with the phrasal segmentations of an SMT system trained on the resegmented bitext. In the second step, multiple segmentation schemes are integrated into a single SMT system by characterizing the source language side and merging identical translation pairs of differently segmented SMT models. Experimental results translating five Asian languages into English revealed that the proposed method of integrating multiple segmentation schemes outperforms SMT models trained on any of the learned word segmentations and performs comparably to available monolingually built segmentation tools.

  • Bayesian Context Clustering Using Cross Validation for Speech Recognition

    Kei HASHIMOTO  Heiga ZEN  Yoshihiko NANKAKU  Akinobu LEE  Keiichi TOKUDA  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:3
      Page(s):
    668-678

    This paper proposes Bayesian context clustering using cross validation for hidden Markov model (HMM) based speech recognition. The Bayesian approach is a statistical technique for estimating reliable predictive distributions by treating model parameters as random variables. The variational Bayesian method, which is widely used as an efficient approximation of the Bayesian approach, has been applied to HMM-based speech recognition, and it shows good performance. Moreover, the Bayesian approach can select an appropriate model structure while taking account of the amount of training data. Since prior distributions which represent prior information about model parameters affect estimation of the posterior distributions and selection of model structure (e.g., decision tree based context clustering), the determination of prior distributions is an important problem. However, it has not been thoroughly investigated in speech recognition, and the determination technique of prior distributions has not performed well. The proposed method can determine reliable prior distributions without any tuning parameters and select an appropriate model structure while taking account of the amount of training data. Continuous phoneme recognition experiments show that the proposed method achieved a higher performance than the conventional methods.

  • MicroRNA Expression Profiles for Classification and Analysis of Tumor Samples

    Dang Hung TRAN  Tu Bao HO  Tho Hoan PHAM  Kenji SATOU  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    416-422

    One kind of functional noncoding RNAs, microRNAs (miRNAs), form a class of endogenous RNAs that can have important regulatory roles in animals and plants by targeting transcripts for cleavage or translation repression. Researches on both experimental and computational approaches have shown that miRNAs indeed involve in the human cancer development and progression. However, the miRNAs that contribute more information to the distinction between the normal and tumor samples (tissues) are still undetermined. Recently, the high-throughput microarray technology was used as a powerful technique to measure the expression level of miRNAs in cells. Analyzing this expression data can allow us to determine the functional roles of miRNAs in the living cells. In this paper, we present a computational method to (1) predicting the tumor tissues using high-throughput miRNA expression profiles; (2) finding the informative miRNAs that show strong distinction of expression level in tumor tissues. To this end, we perform a support vector machine (SVM) based method to deeply examine one recent miRNA expression dataset. The experimental results show that SVM-based method outperforms other supervised learning methods such as decision trees, Bayesian networks, and backpropagation neural networks. Furthermore, by using the miRNA-target information and Gene Ontology annotations, we showed that the informative miRNAs have strong evidences related to some types of human cancer including breast, lung, and colon cancer.

  • Design of a Broadband Cruciform Substrate Integrated Waveguide Coupler

    Mitsuyoshi KISHIHARA  Isao OHTA  Kensuke OKUBO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:2
      Page(s):
    248-250

    A broadband cruciform substrate integrated waveguide coupler is designed based on the planar circuit approach. The broadband property is obtained by widening the crossed region in the same way as rectangular waveguide cruciform couplers. As a result, a 3 dB coupler with fractional bandwidth of 30% is realized at 24 GHz.

  • Laplacian Support Vector Machines with Multi-Kernel Learning

    Lihua GUO  Lianwen JIN  

     
    LETTER-Pattern Recognition

      Vol:
    E94-D No:2
      Page(s):
    379-383

    The Laplacian support vector machine (LSVM) is a semi-supervised framework that uses manifold regularization for learning from labeled and unlabeled data. However, the optimal kernel parameters of LSVM are difficult to obtain. In this paper, we propose a multi-kernel LSVM (MK-LSVM) method using multi-kernel learning formulations in combination with the LSVM. Our learning formulations assume that a set of base kernels are grouped, and employ l2 norm regularization for automatically seeking the optimal linear combination of base kernels. Experimental testing reveals that our method achieves better performance than the LSVM alone using synthetic data, the UCI Machine Learning Repository, and the Caltech database of Generic Object Classification.

  • Multi-Level Bounded Model Checking with Symbolic Counterexamples

    Tasuku NISHIHARA  Takeshi MATSUMOTO  Masahiro FUJITA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:2
      Page(s):
    696-705

    Bounded model checking is a widely used formal technique in both hardware and software verification. However, it cannot be applied if the bounds (number of time frames to be analyzed) become large, and deep bugs which are observed only through very long counter-examples cannot be detected. This paper presents a method concatenating multiple bounded model checking results efficiently with symbolic simulation. A bounded model checking with a large bound is recursively decomposed into multiple ones with smaller bounds, and symbolic simulation on each counterexample supports smooth connections to the others. A strong heuristic for the proposed method that targets deep bugs is also presented, and can be applied together with other efficient bounded model checking methods since it does not touch the basic bounded model checking algorithm.

  • A Further Improved Technique on the Stochastic Functional Approach for Randomly Rough Surface Scattering -- Analytical-Numerical Wiener Analysis --

    Yasuhiko TAMURA  

     
    PAPER-Random Media and Rough Surfaces

      Vol:
    E94-C No:1
      Page(s):
    39-46

    This paper proposes a further improved technique on the stochastic functional approach for randomly rough surface scattering. The original improved technique has been established in the previous paper [Waves in Random and Complex Media, vol.19, no.2, pp.181-215, 2009] as a novel numerical-analytical method for a Wiener analysis. By deriving modified hierarchy equations based on the diagonal approximation solution of random wavefields for a TM plane wave incidence or even for a TE plane wave incidence under large roughness, large slope or low grazing incidence, such a further improved technique can provide a large reduction of required computational resources, in comparison with the original improved technique. This paper shows that numerical solutions satisfy the optical theorem with very good accuracy, by using small computational resources.

  • Dynamic Program Behavior Identification for High Performance CMPs with Private LLCs

    Xiaomin JIA  Pingjing LU  Caixia SUN  Minxuan ZHANG  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3211-3222

    Chip Multi-Processors (CMPs) emerge as a mainstream architectural design alternative for high performance parallel and distributed computing. Last Level Cache (LLC) management is critical to CMPs because off-chip accesses often require a long latency. Due to its short access latency, well performance isolation and easy scalability, private cache is an attractive design alternative for LLC of CMPs. This paper proposes program Behavior Identification-based Cache Sharing (BICS) for LLC management. BICS is based on a private cache organization for the shorter access latency. Meanwhile, BICS tries to simulate a shared cache organization by allowing evicted blocks of one private LLC to be saved at peer LLCs. This technique is called spilling. BICS identifies cache behavior types of applications at runtime. When a cache block is evicted from a private LLC, cache behavior characteristics of the local application are evaluated so as to determine whether the block is to be spilled. Spilled blocks are allowed to replace some valid blocks of the peer LLCs as long as the interference is within a reasonable level. Experimental results using a full system CMP simulator show that BICS improves the overall throughput by as much as 14.5%, 12.6%, 11.0% and 11.7% (on average 8.8%, 4.8%, 4.0% and 6.8%) over private cache, shared cache, Utility-based Cache Partitioning (UCP) scheme and the baseline spilling-based organization Cooperative Caching (CC) respectively on a 4-core CMP for SPEC CPU2006 benchmarks.

  • Optimal Gaussian Kernel Parameter Selection for SVM Classifier

    Xu YANG  HuiLin XIONG  Xin YANG  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:12
      Page(s):
    3352-3358

    The performance of the kernel-based learning algorithms, such as SVM, depends heavily on the proper choice of the kernel parameter. It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks. In this paper, we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion, which measures the data distribution in the kernel-induced feature space, and is invariant under any non-singular linear transformation. The experimental results show that both the class separability of the data in the kernel-induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter.

  • A New Hybrid Method for Machine Transliteration

    Dong YANG  Paul DIXON  Sadaoki FURUI  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:12
      Page(s):
    3377-3383

    This paper proposes a new hybrid method for machine transliteration. Our method is based on combining a newly proposed two-step conditional random field (CRF) method and the well-known joint source channel model (JSCM). The contributions of this paper are as follows: (1) A two-step CRF model for machine transliteration is proposed. The first CRF segments a character string of an input word into chunks and the second one converts each chunk into a character in the target language. (2) A joint optimization method of the two-step CRF model and a fast decoding algorithm are also proposed. Our experiments show that the joint optimization of the two-step CRF model works as well as or even better than the JSCM, and the fast decoding algorithm significantly decreases the decoding time. (3) A rapid development method based on a weighted finite state transducer (WFST) framework for the JSCM is proposed. (4) The combination of the proposed two-step CRF model and JSCM outperforms the state-of-the-art result in terms of top-1 accuracy.

  • PAW: A Pattern-Aware Write Policy for a Flash Non-volatile Cache

    Young-Jin KIM  Jihong KIM  Jeong-Bae LEE  Kee-Wook RIM  

     
    PAPER-Software System

      Vol:
    E93-D No:11
      Page(s):
    3017-3026

    In disk-based storage systems, non-volatile write caches have been widely used to reduce write latency as well as to ensure data consistency at the level of a storage controller. Write cache policies should basically consider which data is important to cache and evict, and they should also take into account the real I/O features of a non-volatile device. However, existing work has mainly focused on improving basic cache operations, but has not considered the I/O cost of a non-volatile device properly. In this paper, we propose a pattern-aware write cache policy, PAW for a NAND flash memory in disk-based mobile storage systems. PAW is designed to face a mix of a number of sequential accesses and fewer non-sequential ones in mobile storage systems by redirecting the latter to a NAND flash memory and the former to a disk. In addition, PAW employs the synergistic effect of combining a pattern-aware write cache policy and an I/O clustering-based queuing method to strengthen the sequentiality with the aim of reducing the overall system I/O latency. For evaluations, we have built a practical hard disk simulator with a non-volatile cache of a NAND flash memory. Experimental results show that our policy significantly improves the overall I/O performance by reducing the overhead from a non-volatile cache considerably over a traditional one, achieving a high efficiency in energy consumption.

  • Achievable Rate of Adaptive Wireless Multicast with Antenna Diversity in Nakagami Fading Channels

    Jae Cheol PARK  Jin Soo WANG  Iickho SONG  Yun Hee KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2826-2829

    We derive the average achievable rate of an adaptive wireless multicast method with antenna diversity in Nakagami fading channels when the rate is selected by the minimum signal-to-noise ratio (SNR) of the multicast group. Based on the limiting distribution of the minimum SNR, we then derive an approximation to the average achievable rate, which provides accurate values easily in a wide range of channel parameters.

  • A Comparative Study of Unsupervised Anomaly Detection Techniques Using Honeypot Data

    Jungsuk SONG  Hiroki TAKAKURA  Yasuo OKABE  Daisuke INOUE  Masashi ETO  Koji NAKAO  

     
    PAPER-Information Network

      Vol:
    E93-D No:9
      Page(s):
    2544-2554

    Intrusion Detection Systems (IDS) have been received considerable attention among the network security researchers as one of the most promising countermeasures to defend our crucial computer systems or networks against attackers on the Internet. Over the past few years, many machine learning techniques have been applied to IDSs so as to improve their performance and to construct them with low cost and effort. Especially, unsupervised anomaly detection techniques have a significant advantage in their capability to identify unforeseen attacks, i.e., 0-day attacks, and to build intrusion detection models without any labeled (i.e., pre-classified) training data in an automated manner. In this paper, we conduct a set of experiments to evaluate and analyze performance of the major unsupervised anomaly detection techniques using real traffic data which are obtained at our honeypots deployed inside and outside of the campus network of Kyoto University, and using various evaluation criteria, i.e., performance evaluation by similarity measurements and the size of training data, overall performance, detection ability for unknown attacks, and time complexity. Our experimental results give some practical and useful guidelines to IDS researchers and operators, so that they can acquire insight to apply these techniques to the area of intrusion detection, and devise more effective intrusion detection models.

  • Effective Management of Secondary User's Density in Cognitive Radio Networks

    Chunxiao JIANG  Shuai FAN  Canfeng CHEN  Jian MA  Yong REN  

     
    LETTER-Network Management/Operation

      Vol:
    E93-B No:9
      Page(s):
    2443-2447

    Cognitive radio has emerged as an efficient approach to reusing the licensed spectrums. How to appropriately set parameters of secondary user (SU) plays a rather important role in constructing cognitive radio networks. In this letter, we have analyzed the theoretical value of SUs' density, which provides a standard for controlling the number of SUs around one primary receiver, in order to guarantee that primary communication links do not experience excessive interference. The simulation result of secondary density well matches with the theoretical result derived from our analysis. Additionally, the achievable rate of secondary user under density control is also analyzed and simulated.

  • A Parallel Branching Program Machine for Sequential Circuits: Implementation and Evaluation

    Hiroki NAKAHARA  Tsutomu SASAO  Munehiro MATSUURA  Yoshifumi KAWAMURA  

     
    PAPER-Logic Design

      Vol:
    E93-D No:8
      Page(s):
    2048-2058

    The parallel branching program machine (PBM128) consists of 128 branching program machines (BMs) and a programmable interconnection. To represent logic functions on BMs, we use quaternary decision diagrams. To evaluate functions, we use 3-address quaternary branch instructions. We realized many benchmark functions on the PBM128, and compared its memory size, computation time, and power consumption with the Intel's Core2Duo microprocessor. The PBM128 requires approximately a quarter of the memory for the Core2Duo, and is 21.4-96.1 times faster than the Core2Duo. It dissipates a quarter of the power of the Core2Duo. Also, we realized packet filters such as an access controller and a firewall, and compared their performance with software on the Core2Duo. For these packet filters, the PBM128 requires approximately 17% of the memory for the Core2Duo, and is 21.3-23.7 times faster than the Core2Duo.

  • An Empirical Study of FTL Performance in Conjunction with File System Pursuing Data Integrity

    In Hwan DOH  Myoung Sub SHIM  Eunsam KIM  Jongmoo CHOI  Donghee LEE  Sam H. NOH  

     
    LETTER-Software System

      Vol:
    E93-D No:8
      Page(s):
    2302-2305

    Due to the detachability of Flash storage, which is a dominant portable storage, data integrity stored in Flash storages becomes an important issue. This study considers the performance of Flash Translation Layer (FTL) schemes embedded in Flash storages in conjunction with file system behavior that pursue high data integrity. To assure extreme data integrity, file systems synchronously write all file data to storage accompanying hot write references. In this study, we concentrate on the effect of hot write references on Flash storage, and we consider the effect of absorbing the hot write references via nonvolatile write cache on the performance of the FTL schemes in Flash storage. In so doing, we quantify the performance of typical FTL schemes for a realistic digital camera workload that contains hot write references through experiments on a real system environment. Results show that for the workload with hot write references FTL performance does not conform with previously reported studies. We also conclude that the impact of the underlying FTL schemes on the performance of Flash storage is dramatically reduced by absorbing the hot write references via nonvolatile write cache.

  • A Quaternary Decision Diagram Machine: Optimization of Its Code

    Tsutomu SASAO  Hiroki NAKAHARA  Munehiro MATSUURA  Yoshifumi KAWAMURA  Jon T. BUTLER  

     
    INVITED PAPER

      Vol:
    E93-D No:8
      Page(s):
    2026-2035

    This paper first reviews the trends of VLSI design, focusing on the power dissipation and programmability. Then, we show the advantage of Quarternary Decision Diagrams (QDDs) in representing and evaluating logic functions. That is, we show how QDDs are used to implement QDD machines, which yield high-speed implementations. We compare QDD machines with binary decision diagram (BDD) machines, and show a speed improvement of 1.28-2.02 times when QDDs are chosen. We consider 1-and 2-address BDD machines, and 3- and 4-address QDD machines, and we show a method to minimize the number of instructions.

541-560hit(1072hit)