The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

2601-2620hit(18690hit)

  • PTS-Based PAPR Reduction by Iterative p-Norm Minimization without Side Information in OFDM Systems

    Moeko YOSHIDA  Hiromichi NASHIMOTO  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/24
      Vol:
    E101-B No:3
      Page(s):
    856-864

    This paper proposes a partial transmit sequences (PTS)-based PAPR reduction method and a phase factor estimation method without side information for OFDM systems with QPSK and 16QAM modulation. In the transmitter, an iterative algorithm that minimizes the p-norm of a transmitted signal determines phase factors to reduce PAPR. Unlike conventional methods, the phase factors are allowed to take continuous values in a limited range. In the receiver, the phase factor is blindly estimated by evaluating the phase differences between the equalizer's output and its closest constellation points. Simulation results show that the proposed PAPR reduction method is more computationally efficient than the conventional PTS. Moreover, the combined use of the two proposed methods achieves a satisfactory tradeoff between PAPR and BER by limiting the phase factors properly.

  • Network-Listening Based Synchronization with Loop-Back Interference Avoidance Using Synchronization Signal

    Mitsukuni KONISHI  Sho NABATAME  Daigo OGATA  Atsushi NAGATE  Teruya FUJII  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/11
      Vol:
    E101-B No:3
      Page(s):
    885-896

    Network-listening-based synchronization is recently attracting attention as an effective timing synchronization method for indoor small-cell base stations as they cannot utilize GPS-based synchronization. It uses only the macro-cell downlink signal to establish synchronization with the overlaying macro cell. However, the loop-back signal from the small-cell base station itself interferes with the reception of the macro-cell downlink signal in the deployment of co-channel heterogeneous networks. In this paper, we investigate a synchronization method that avoids loop-back interference by muting small-cell data transmission and shifting small-cell transmission timing. Our proposal enables to reduce the processing burden of the network listening and mitigate the throughput degradation of the small cell caused by the data-transmission mutation. In addition to this, the network-listening system enables the network listening in dense small cell deployments where a large number of neighboring small cells exist. We clarify the performance of our proposal by computer simulations and laboratory experiments on actual equipment.

  • Design and Impact on ESD/LU Immunities by Drain-Side Super-Junction Structures in Low-(High-)Voltage MOSFETs for the Power Applications

    Shen-Li CHEN  Yu-Ting HUANG  Shawn CHANG  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:3
      Page(s):
    143-150

    In this study, the reference pure metal-oxide semiconductor field-effect transistors (MOSFETs) and low-voltage (LV) and high-voltage (HV) MOSFETs with a super-junction (SJ) structure in the drain side were experimentally compared. The results show that the drain-side engineering of SJs exerts negative effects on the electrostatic discharge (ESD) and latch-up (LU) immunities of LV n-channel MOSFETs, whereas for LV p-channel MOSFETs and HV n-channel laterally diffused MOSFETs (nLDMOSs), the effects are positive. Compared with the pure MOSFET, electrostatic discharge (ESD) robustness (It2) decreased by approximately 30.25% for the LV nMOS-SJ, whereas It2 increased by approximately 2.42% and 46.63% for the LV pMOS-SJ and HV nLDMOS-SJ, respectively; furthermore, LU immunity (Vh) decreased by approximately 5.45% for the LV nMOS-SJ, whereas Vh increased by approximately 0.44% and 35.5% for the LV pMOS-SJ and HV nLDMOS-SJ, respectively. Thus, nMOS-SJ (pMOS-SJ and nLDMOS-SJ) has lower (higher) It2 and Vh, and this drain-side SJ structure of MOSFETs is an inferior (superior) choice for improving the ESD/LU reliability of LV nMOSs (LV pMOS and HV nLDMOS).

  • Low Complexity Log-Likelihood Ratio Calculation Scheme with Bit Shifts and Summations

    Takayoshi AOKI  Keita MATSUGI  Yukitoshi SANADA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    731-739

    This paper presents an approximated log-likelihood ratio calculation scheme with bit shifts and summations. Our previous work yielded a metric calculation scheme that replaces multiplications with bit shifts and summations in the selection of candidate signal points for joint maximum likelihood detection (MLD). Log-likelihood ratio calculation for turbo decoding generally uses multiplications and by replacing them with bit shifts and summations it is possible to reduce the numbers of logic operations under specific transmission parameters. In this paper, an approximated log-likelihood ratio calculation scheme that substitutes bit shifts and summations for multiplications is proposed. In the proposed scheme, additions are used only for higher-order bits. Numerical results obtained through computer simulation show that this scheme can eliminate multiplications in turbo decoding at the cost of just 0.2dB performance degradation at a BER of 10-4.

  • Intelligent Video Surveillance System Based on Event Detection and Rate Adaptation by Using Multiple Sensors

    Kenji KANAI  Keigo OGAWA  Masaru TAKEUCHI  Jiro KATTO  Toshitaka TSUDA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    688-697

    To reduce the backbone video traffic generated by video surveillance, we propose an intelligent video surveillance system that offers multi-modal sensor-based event detection and event-driven video rate adaptation. Our proposed system can detect pedestrian existence and movements in the monitoring area by using multi-modal sensors (camera, laser scanner and infrared distance sensor) and control surveillance video quality according to the detected events. We evaluate event detection accuracy and video traffic volume in the experiment scenarios where up to six pedestrians pass through and/or stop at the monitoring area. Evaluation results conclude that our system can significantly reduce video traffic while ensuring high-quality surveillance.

  • vEPC Optimal Resource Assignment Method for Accommodating M2M Communications

    Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    637-647

    The 5G mobile network environment has been studied and developed, and the concept of a vEPC (Virtualized Evolved Packet Core) has been introduced as a framework for Network Functions Virtualization (NFV). Machine-to-Machine (M2M) communications in 5G networks require much faster response than are possible in 4G networks. However, if both the control plane (C-plane) and the data plane (D-plane) functions of the EPC are migrated into a single vEPC server, M2M devices and other user equipments (UEs) share the same resources. To accommodate delay-sensitive M2M sessions in vEPC networks, not only signaling performance on the C-plane but also packet processing performance on the D-plane must be optimized. In this paper, we propose a method for optimizing resource assignment of C-plane and D-plane Virtualized Network Functions (VNFs) in a vEPC server, called the vEPC-ORA method. We distinguish the communications of M2M devices and smartphones and model the vEPC server by using queueing theory. Numerical analysis of optimal resource assignment shows that our proposed method minimizes the blocking rates of M2M sessions and smartphone sessions. We also confirmed that the mean packet processing time is kept within the allowable delay for each communication type, as long as the vEPC server has enough VM resources. Moreover, we study a resource granularity effect on the optimal resource assignment. Numerical analysis under a fixed number of hardware resources of MME and S/P-GW is done for various resource granularities of the vEPC server. The evaluation results of numerical analyses showed that the vEPC-ORA method derives the optimal resource assignment in practical calculation times.

  • On-Orbit Estimation and Calibration of GPS Antenna Geometry Offsets for Attitude Determination of LEO Satellites

    Huiling HOU  Weisheng HU  Kang WU  Xuwen LIANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:3
      Page(s):
    644-648

    In this letter, a novel on-orbit estimation and calibration method of GPS antenna geometry offsets for attitude determination of LEO satellites is proposed. Both baseline vectors in the NED coordinate system are achieved epoch-by-epoch firstly. Then multiple epochs' baseline vectors are united to compute all the offsets via an UKF for a certain long time. After on-orbit estimation and calibration, instantaneous and accurate attitude can be achieved. Numerical results show that the proposed method can obtain the offsets of each baseline in all directions with high accuracy estimation and small STDs, and effective attitudes can be achieved after antenna geometry calibration using the estimated offsets. The high accuracy give the proposed scheme a strong practical-oriented ability.

  • Optimal ZCZ Complementary Sequence Sets with Low Column Sequence PMEPR

    Yubo LI  Liying TIAN  Shengyi LIU  

     
    LETTER-Information Theory

      Vol:
    E101-A No:3
      Page(s):
    612-616

    In this letter, based on orthogonal Golay sequence sets and orthogonal matrices, general constructions of zero correlation zone (ZCZ) aperiodic complementary sequence (ZACS) sets are proposed. The resultant ZACSs have column sequence peak-to-mean envelop power ratio (PMEPR) of at most 2, and the parameters of the sequence sets are optimal with respect to the theoretical bound. The novel ZACS sets are suitable for approximately synchronized multi-carrier CDMA (MC-CDMA) communication systems.

  • Optimization of MAC-Layer Sensing Based on Alternating Renewal Theory in Cognitive Radio Networks

    Zhiwei MAO  Xianmin WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    865-876

    Cognitive radio (CR) is considered as the most promising solution to the so-called spectrum scarcity problem, in which channel sensing is an important problem. In this paper, the problem of determining the period of medium access control (MAC)-layer channel sensing in cognitive radio networks (CRNs) is studied. In our study, the channel state is statistically modeled as a continuous-time alternating renewal process (ARP) alternating between the OFF and ON states for the primary user (PU)'s communication activity. Based on the statistical ARP model, we analyze the CRNs with different SU MAC protocols, taking into consideration the effects of practical issues of imperfect channel sensing and non-negligible channel sensing time. Based on the analysis results, a constrained optimization problem to find the optimal sensing period is formulated and the feasibility of this problem is studied for systems with different OFF/ON channel state length distributions. Numerical results are presented to show the performance of the proposed sensing period optimization scheme. The effects of practical system parameters, including channel sensing errors and channel sensing time, on the performance and the computational complexity of the proposed sensing period optimization scheme are also investigated.

  • A Network-Based Identifier Locator Separation Scheme for VANETs

    Ju-Ho CHOI  Jung-Hwan CHA  Youn-Hee HAN  Sung-Gi MIN  

     
    PAPER-Network

      Pubricized:
    2017/08/24
      Vol:
    E101-B No:3
      Page(s):
    785-794

    The integration of VANETs with Internet is required if vehicles are to access IP-based applications. A vehicle must have an IP address, and the IP mobility service should be supported during the movement of the vehicle. VANET standards such as WAVE or C-ITS use IPv6 address auto configuration to allocate an IP address to a vehicle. In C-ITS, NEMO-BS is used to support IP mobility. The vehicle moves rapidly, so reallocation of IP address as well as binding update occurs frequently. The vehicle' communication, however, may be disrupted for a considerable amount of time, and the packet loss occurs during these events. Also, the finding of the home address of the peer vehicle is not a trivial matter. We propose a network based identifier locator separation scheme for VANETs. The scheme uses a vehicle identity based address generation scheme. It eliminates the frequent address reallocation and simplifies the finding of the peer vehicle IP address. In the scheme, a network entity tracks the vehicles in its coverage and the vehicles share the IP address of the network entity for their locators. The network entity manages the mapping between the vehicle's identifier and its IP address. The scheme excludes the vehicles from the mobility procedure, so a vehicle needs only the standard IPv6 protocol stack, and mobility signaling does not occur on the wireless link. The scheme also supports seamlessness, so packet loss is mitigated. The results of a simulation show that the vehicles experience seamless packet delivery.

  • Regulated Transport Network Design Using Geographical Resolution

    Shohei KAMAMURA  Aki FUKUDA  Rie HAYASHI  Yoshihiko UEMATSU  

     
    PAPER-Network

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    805-815

    This paper proposes a regulated transport network design algorithm for IP over a dense wavelength division multiplex (DWDM) network. When designing an IP over DWDM network, the network operator should consider not only cost-effectiveness and physical constraints such as wavelength colors and chromatic dispersion but also operational policies such as resilience, quality, stability, and operability. For considering the above polices, we propose to separate the network design algorithm based on a geographical resolution; the policy-based regulated intra-area is designed based on this resolution, and the cost-optimal inter-area is then designed separately, and finally merged. This approach does not necessarily yield a strict optimal solution, but it covers network design work done by humans, which takes a vast amount of time and requires a high skill level. For efficient geographical resolution, we also present fast graph mining algorithm, which can solve NP-hard subgraph isomorphism problem within the practical time. We prove the sufficiency of the resulting network design for the above polices by visualizing the topology, and also prove that the penalty of applying the approach is trivial.

  • On the Second Separating Redundancy of LDPC Codes from Finite Planes

    Haiyang LIU  Yan LI  Lianrong MA  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    617-622

    The separating redundancy is an important concept in the analysis of the error-and-erasure decoding of a linear block code using a parity-check matrix of the code. In this letter, we derive new constructive upper bounds on the second separating redundancies of low-density parity-check (LDPC) codes constructed from projective and Euclidean planes over the field Fq with q even.

  • Low Complexity Compressive Sensing Greedy Detection of Generalized Quadrature Spatial Modulation

    Rajesh RAMANATHAN  Partha Sharathi MALLICK  Thiruvengadam SUNDARAJAN JAYARAMAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    632-635

    In this letter, we propose a generalized quadrature spatial modulation technique (GQSM) which offers additional bits per channel use (bpcu) gains and a low complexity greedy detector algorithm, structured orthogonal matching pursuit (S-OMP)- GQSM, based on compressive sensing (CS) framework. Simulation results show that the bit error rate (BER) performance of the proposed greedy detector is very close to maximum likelihood (ML) and near optimal detectors based on convex programming.

  • Experimental Verification of Null-Space Expansion for Multiuser Massive MIMO via Channel State Information Measurement

    Tatsuhiko IWAKUNI  Kazuki MARUTA  Atsushi OHTA  Yushi SHIRATO  Masataka IIZUKA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    877-884

    This paper presents experimental results of our proposed null-space expansion scheme for multiuser massive multiple-input multiple-output (MIMO) in time varying channels. Multiuser MIMO transmission with the proposed scheme can suppress the inter-user interference (IUI) caused by outdated channel state information (CSI). The excess degrees of freedom (DoFs) of massive MIMO is exploited to perform additional null-steering using past estimated CSI. The signal-to-interference power ratio (SIR) and spectral efficiency performances achieved by the proposed scheme that uses measured CSI is experimentally evaluated. It is confirmed that the proposed scheme shows performance superior to the conventional channel prediction scheme. In addition, IUI can be stably suppressed even in high mobility environments by further increasing the null-space dimension.

  • Complexity of the Minimum Single Dominating Cycle Problem for Graph Classes

    Hiroshi ETO  Hiroyuki KAWAHARA  Eiji MIYANO  Natsuki NONOUE  

     
    PAPER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    574-581

    In this paper, we study a variant of the MINIMUM DOMINATING SET problem. Given an unweighted undirected graph G=(V,E) of n=|V| vertices, the goal of the MINIMUM SINGLE DOMINATING CYCLE problem (MinSDC) is to find a single shortest cycle which dominates all vertices, i.e., a cycle C such that for the set V(C) of vertices in C and the set N(V(C)) of neighbor vertices of C, V(G)=V(C)∪N(V(C)) and |V(C)| is minimum over all dominating cycles in G [6], [17], [24]. In this paper we consider the (in)approximability of MinSDC if input graphs are restricted to some special classes of graphs. We first show that MinSDC is still NP-hard to approximate even when restricted to planar, bipartite, chordal, or r-regular (r≥3). Then, we show the (lnn+1)-approximability and the (1-ε)lnn-inapproximability of MinSDC on split graphs under P≠NP. Furthermore, we explicitly design a linear-time algorithm to solve MinSDC for graphs with bounded treewidth and estimate the hidden constant factor of its running time-bound.

  • Adaptive Extrinsic Information Scaling for Concatenated Zigzag Codes Based on Max-Log-APP

    Hao ZHENG  Xingan XU  Changwei LV  Yuanfang SHANG  Guodong WANG  Chunlin JI  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    627-631

    Concatenated zigzag (CZ) codes are classified as one kind of parallel-concatenated codes with powerful performance and low complexity. This kind of codes has flexible implementation methods and a good application prospect. We propose a modified turbo-type decoder and adaptive extrinsic information scaling method based on the Max-Log-APP (MLA) algorithm, which can provide a performance improvement also under the relatively low decoding complexity. Simulation results show that the proposed method can effectively help the sub-optimal MLA algorithm to approach the optimal performance. Some contrasts with low-density parity-check (LDPC) codes are also presented in this paper.

  • Multiple Matrix Rank Minimization Approach to Audio Declipping

    Ryohei SASAKI  Katsumi KONISHI  Tomohiro TAKAHASHI  Toshihiro FURUKAWA  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/12/06
      Vol:
    E101-D No:3
      Page(s):
    821-825

    This letter deals with an audio declipping problem and proposes a multiple matrix rank minimization approach. We assume that short-time audio signals satisfy the autoregressive (AR) model and formulate the declipping problem as a multiple matrix rank minimization problem. To solve this problem, an iterative algorithm is provided based on the iterative partial matrix shrinkage (IPMS) algorithm. Numerical examples show its efficiency.

  • Action Recognition Using Low-Rank Sparse Representation

    Shilei CHENG  Song GU  Maoquan YE  Mei XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/24
      Vol:
    E101-D No:3
      Page(s):
    830-834

    Human action recognition in videos draws huge research interests in computer vision. The Bag-of-Word model is quite commonly used to obtain the video level representations, however, BoW model roughly assigns each feature vector to its nearest visual word and the collection of unordered words ignores the interest points' spatial information, inevitably causing nontrivial quantization errors and impairing improvements on classification rates. To address these drawbacks, we propose an approach for action recognition by encoding spatio-temporal log Euclidean covariance matrix (ST-LECM) features within the low-rank and sparse representation framework. Motivated by low rank matrix recovery, local descriptors in a spatial temporal neighborhood have similar representation and should be approximately low rank. The learned coefficients can not only capture the global data structures, but also preserve consistent. Experimental results showed that the proposed approach yields excellent recognition performance on synthetic video datasets and are robust to action variability, view variations and partial occlusion.

  • A Sub-1-µs Start-Up Time, Fully-Integrated 32-MHz Relaxation Oscillator for Low-Power Intermittent Systems

    Hiroki ASANO  Tetsuya HIROSE  Taro MIYOSHI  Keishi TSUBAKI  Toshihiro OZAKI  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:3
      Page(s):
    161-169

    This paper presents a fully integrated 32-MHz relaxation oscillator (ROSC) capable of sub-1-µs start-up time operation for low-power intermittent VLSI systems. The proposed ROSC employs current mode architecture that is different from conventional voltage mode architecture. This enables compact and fast switching speed to be achieved. By designing transistor sizes equally between one in a bias circuit and another in a voltage to current converter, the effect of process variation can be minimized. A prototype chip in a 0.18-µm CMOS demonstrated that the ROSC generates a stable clock frequency of 32.6 MHz within 1-µs start-up time. Measured line regulation and temperature coefficient were ±0.69% and ±0.38%, respectively.

  • Classification of Utterances Based on Multiple BLEU Scores for Translation-Game-Type CALL Systems

    Reiko KUWA  Tsuneo KATO  Seiichi YAMAMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/12/04
      Vol:
    E101-D No:3
      Page(s):
    750-757

    This paper proposes a classification method of second-language-learner utterances for interactive computer-assisted language learning systems. This classification method uses three types of bilingual evaluation understudy (BLEU) scores as features for a classifier. The three BLEU scores are calculated in accordance with three subsets of a learner corpus divided according to the quality of utterances. For the purpose of overcoming the data-sparseness problem, this classification method uses the BLEU scores calculated using a mixture of word and part-of-speech (POS)-tag sequences converted from word sequences based on a POS-replacement rule according to which words are replaced with POS tags in n-grams. Experiments of classifying English utterances by Japanese demonstrated that the proposed classification method achieved classification accuracy of 78.2% which was 12.3 points higher than a baseline with one BLEU score.

2601-2620hit(18690hit)