The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

2681-2700hit(18690hit)

  • Early Detection of Performance Degradation from Basic Aggregated Link Utilization Statistics

    David FERNÁNDEZ HERMIDA  Miguel RODELGO LACRUZ  Cristina LÓPEZ BRAVO  Francisco Javier GONZÁLEZ-CASTAO  

     
    PAPER-Network

      Pubricized:
    2017/07/26
      Vol:
    E101-B No:2
      Page(s):
    508-519

    The growth of Internet traffic and the variety of traffic classes make network performance extremely difficult to evaluate. Even though most current methods rely on complex or costly hardware, recent research on bandwidth sharing has suggested the possibility of defining evaluation methods that simply require basic statistics on aggregated link utilization, such as mean and variance. This would greatly simplify monitoring systems as these statistics are easily calculable from Simple Network Management Protocol (SNMP) calls. However, existing methods require knowledge of certain fixed information about the network being monitored (e.g. link capacities). This is usually unavailable when the operator's view is limited to its share of leased links or when shared links carry traffic with different priorities. In this paper, departing from the analysis of aggregated link utilization statistics obtainable from SNMP requests, we propose a method that detects traffic degradation based on link utilization samples. It does not require knowledge of the capacity of the aggregated link or any other network parameters, giving network operators the possibility to control network performance in a more reliable and cost-effective way.

  • Optimal Transmission Policy in Decoupled RF Energy Harvesting Networks

    Yu Min HWANG  Jun Hee JUNG  Yoan SHIN  Jin Young KIM  Dong In KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    516-520

    In this letter, we study a scenario based on decoupled RF energy harvesting networks (DRF-EHNs) that separate energy sources from information sources to overcome the doubly near-far problem and improve harvesting efficiency. We propose an algorithm to maximize energy efficiency (EE) while satisfying constraints on the maximum transmit power of the hybrid access point (H-AP) and power beacon (PB), while further satisfying constraints on the minimum quality of service and minimum amount of harvested power in multi-user Rayleigh fading channel. Using nonlinear fractional programming and Lagrangian dual decomposition, we optimize EE with four optimization arguments: the transmit power from the H-AP and PB, time-splitting ratio, and power-splitting ratio. Numerical results show that the proposed algorithm is more energy-efficient compared to baseline schemes.

  • Deep Relational Model: A Joint Probabilistic Model with a Hierarchical Structure for Bidirectional Estimation of Image and Labels

    Toru NAKASHIKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/10/25
      Vol:
    E101-D No:2
      Page(s):
    428-436

    Two different types of representations, such as an image and its manually-assigned corresponding labels, generally have complex and strong relationships to each other. In this paper, we represent such deep relationships between two different types of visible variables using an energy-based probabilistic model, called a deep relational model (DRM) to improve the prediction accuracies. A DRM stacks several layers from one visible layer on to another visible layer, sandwiching several hidden layers between them. As with restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs), all connections (weights) between two adjacent layers are undirected. During maximum likelihood (ML) -based training, the network attempts to capture the latent complex relationships between two visible variables with its deep architecture. Unlike deep neural networks (DNNs), 1) the DRM is a totally generative model and 2) allows us to generate one visible variables given the other, and 2) the parameters can be optimized in a probabilistic manner. The DRM can be also fine-tuned using DNNs, like deep belief nets (DBNs) or DBMs pre-training. This paper presents experiments conduced to evaluate the performance of a DRM in image recognition and generation tasks using the MNIST data set. In the image recognition experiments, we observed that the DRM outperformed DNNs even without fine-tuning. In the image generation experiments, we obtained much more realistic images generated from the DRM more than those from the other generative models.

  • CAPTCHA Image Generation Systems Using Generative Adversarial Networks

    Hyun KWON  Yongchul KIM  Hyunsoo YOON  Daeseon CHOI  

     
    LETTER-Information Network

      Pubricized:
    2017/10/26
      Vol:
    E101-D No:2
      Page(s):
    543-546

    We propose new CAPTCHA image generation systems by using generative adversarial network (GAN) techniques to strengthen against CAPTCHA solvers. To verify whether a user is human, CAPTCHA images are widely used on the web industry today. We introduce two different systems for generating CAPTCHA images, namely, the distance GAN (D-GAN) and composite GAN (C-GAN). The D-GAN adds distance values to the original CAPTCHA images to generate new ones, and the C-GAN generates a CAPTCHA image by composing multiple source images. To evaluate the performance of the proposed schemes, we used the CAPTCHA breaker software as CAPTCHA solver. Then, we compared the resistance of the original source images and the generated CAPTCHA images against the CAPTCHA solver. The results show that the proposed schemes improve the resistance to the CAPTCHA solver by over 67.1% and 89.8% depending on the system.

  • Pitch Estimation and Voicing Classification Using Reconstructed Spectrum from MFCC

    JianFeng WU  HuiBin QIN  YongZhu HUA  LingYan FAN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/11/15
      Vol:
    E101-D No:2
      Page(s):
    556-559

    In this paper, a novel method for pitch estimation and voicing classification is proposed using reconstructed spectrum from Mel-frequency cepstral coefficients (MFCC). The proposed algorithm reconstructs spectrum from MFCC with Moore-Penrose pseudo-inverse by Mel-scale weighting functions. The reconstructed spectrum is compressed and filtered in log-frequency. Pitch estimation is achieved by modeling the joint density of pitch frequency and the filter spectrum with Gaussian Mixture Model (GMM). Voicing classification is also achieved by GMM-based model, and the test results show that over 99% frames can be correctly classified. The results of pitch estimation demonstrate that the proposed GMM-based pitch estimator has high accuracy, and the relative error is 6.68% on TIMIT database.

  • Comprehensive Analysis of the Impact of TWDP Fading on the Achievable Error Rate Performance of BPSK Signaling

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    500-507

    To effectively analyze the influence of two-wave with diffuse power (TWDP) fading on the achievable error rate performance of binary phase-shift keying (BPSK) signaling, we derive two novel concise asymptotic closed-form bit error rate (BER) formulas. We perform asymptotic analysese based on existing exact and approximate BER formulas, which are obtained from the exact probability density function (PDF) or moment generating function (MGF), and the approximate PDF of TWDP fading. The derived asymptotic closed-form expressions yield explicit insights into the achievable error rate performance in TWDP fading environments. Furthermore, the absolute relative error (ARE) between the exact and approximate coding gains is investigated, from which we also propose a criterion for the order of an approximate PDF, which is more robust than the conventional criterion. Numerical results clearly demonstrate the accuracy of the derived asymptotic formulas, and also support our proposed criterion.

  • Passive-Filter-Configuration-Based Reduction of Up-to-Several-Hundred-MHz EMI Noises in H-Bridge PWM Micro-Stepping Motor Driver Circuits

    Keonil KANG  Kyung-Young JUNG  Sang Won NAM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:2
      Page(s):
    104-111

    Recently, H-bridge pulse width modulation (PWM) micro-stepping motor drivers have been widely used for 3-D printers, robots, and medical instruments. Differently from a simple PWM motor driver circuit, the H-bridge PWM micro-stepping motor driver circuit can generate radio frequency (RF) electromagnetic interference (EMI) noises of up to several hundred MHz frequencies, due to digital interface circuits and a high-performance CPU. For medical instrument systems, the minimization of EMI noises can assure operating safety and greatly reduce the chance of malfunction between instruments. This work proposes a passive-filter configuration-based circuit design for reducing up-to-several-hundred-MHz EMI noises generated from the H-bridge PWM micro-stepping motor driver circuit. More specifically, the proposed RF EMI reduction approach consists of proper passive filter design, shielding in motor wires, and common ground design in the print circuit board. The proposed passive filter configuration design is validated through the overall reduction of EMI noises at RF band. Finally, the proposed EMI reduction approach is tested experientially through a prototype and about 16 dB average reduction of RF EMI noises is demonstrated.

  • Modeling and Layout Optimization of MOM Capacitor for High-Frequency Applications

    Yuka ITANO  Taishi KITANO  Yuta SAKAMOTO  Kiyotaka KOMOKU  Takayuki MORISHITA  Nobuyuki ITOH  

     
    LETTER

      Vol:
    E101-A No:2
      Page(s):
    441-446

    In this work, the metal-oxide-metal (MOM) capacitor in the scaled CMOS process has been modeled at high frequencies using an EM simulator, and its layout has been optimized. The modeled parasitic resistance consists of four components, and the modeled parasitic inductance consists of the comb inductance and many mutual inductances. Each component of the parasitic resistance and inductance show different degrees of dependence on the finger length and on the number of fingers. The substrate network parameters also have optimum points. As such, the geometric dependence of the characteristics of the MOM capacitor is investigated and the optimum layout in the constant-capacitance case is proposed by calculating the results of the model. The proposed MOM capacitor structures for 50fF at f =60GHz are L =5μm with M =3, and, L =2μm with M =5 and that for 100fF at f =30GHz are L =9μm with M =3, and L =4μm with M =5. The target process is 65-nm CMOS.

  • Measurement of Accommodation and Convergence Eye Movement when a Display and 3D Movie Move in the Depth Direction Simultaneously

    Shinya MOCHIDUKI  Yuki YOKOYAMA  Keigo SUKEGAWA  Hiroki SATO  Miyuki SUGANUMA  Mitsuho YAMADA  

     
    PAPER-Image

      Vol:
    E101-A No:2
      Page(s):
    488-498

    In this study, we first developed a simultaneous measurement system for accommodation and convergence eye movement and evaluated its precision. Then, using a stuffed animal as the target, whose depth should be relatively easy to perceive, we measured convergence eye movement and accommodation at the same time while a tablet displaying a 3D movie was moved in the depth direction. By adding the real 3D display depth movement to the movement of the 3D image, subjects showed convergence eye movement that corresponds appropriately to the dual change of parallax in the 3D movie and real display, even when a subject's convergence changed very little. Accommodation also changed appropriately according to the change in depth.

  • Automatic Determination of Phase Centers and Its Application to Precise Measurement of Spacecraft Antennas in a Small Anechoic Chamber

    Yuzo TAMAKI  Takehiko KOBAYASHI  Atsushi TOMIKI  

     
    PAPER-Antennas Measurement

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    364-372

    Precise determination of antenna phase centers is crucial to reduce the uncertainty in gain when employing the three-antenna method, particularly when the range distances are short-such as a 3-m radio anechoic chamber, where the distance between the phase centers and the open ends of an aperture antenna (the most commonly-used reference) is not negligible compared with the propagation distance. An automatic system to determine the phase centers of aperture antennas in a radio anechoic chamber is developed. In addition, the absolute gain of horn antennas is evaluated using the three-antenna method. The phase centers of X-band pyramidal horns were found to migrate up to 18mm from the open end. Uncertainties in the gain were evaluated in accordance with ISO/IEC Guide 93-3: 2008. The 95% confidence interval of the horn antenna gain was reduced from 0.57 to 0.25dB, when using the phase center location instead of the open end. The phase centers, gains, polarization, and radiation patterns of space-borne antennas are measured: low and medium-gain X-band antennas for an ultra small deep space probe employing the polarization pattern method with use of the horn antenna. The 95% confidence interval in the antenna gain decreased from 0.74 to 0.47dB.

  • RSSI-Based Localization Using Wireless Beacon with Three-Element Array

    Ryota TAZAWA  Naoki HONMA  Atsushi MIURA  Hiroto MINAMIZAWA  

     
    PAPER-DOA Estimation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    400-408

    In this paper, we propose an indoor localization method that uses only the Received Signal Strength Indicator (RSSI) of signals transmitted from wireless beacons. The beacons use three-element array antennas, and the position of the receiving terminal is estimated by using multiple DOD information. Each beacon transmits four beacon signals with different directivities by feeding signals to the three-element array antennas via 180-degree and 90-degree hybrids. The correlation matrix of the propagation channels is estimated from just the strength of the signals, and the DOD is estimated from the calculated correlation matrix. For determining the location of the receiving terminal, the existence probability function is introduced. Experiments show that the proposed method attains lower position estimation error than the conventional method.

  • CSI Feedback Reduction Method for Downlink Multiuser MIMO Transmission Using Dense Distributed Antenna Selection

    Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  Masato MIZOGUCHI  Kentaro NISHIMORI  

     
    PAPER-MIMO

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    426-433

    This paper proposes a novel method of reducing channel state information (CSI) feedback by using transmit antenna selection for downlink multiuser multiple input multiple output (DL-MU-MIMO) transmission in dense distributed antenna systems. It is widely known that DL-MU-MIMO transmission achieves higher total bit-rate by mitigating inter-user interference based on pre-coding techniques. The pre-coding techniques require CSI between access point (AP) and multiple users. However, overhead for CSI acquisition degrades the transmission efficiency of DL-MU-MIMO transmission. In the proposed CSI feedback reduction method, AP first selects the antenna set that maximizes the received power at each user, second it skips the sequence of CSI feedback for users whose signal to interference power ratio is larger than a threshold, and finally it performs DL-MU-MIMO transmission to multiple users by using the selected antenna set. To clarify the proposed method, we evaluate it by computer simulations in an indoor scenario. The results show that the proposed method can offer higher transmission efficiency than the conventional DL-MU-MIMO transmission with the usual CSI feedback method.

  • Demultiplexing Method of Variable Capacity Optical OFDM Signal Using Time Lens-Based Optical Fourier Transform Open Access

    Koichi TAKIGUCHI  Takaaki NAKAGAWA  Takaaki MIWA  

     
    PAPER-Optoelectronics

      Vol:
    E101-C No:2
      Page(s):
    112-117

    We propose and demonstrate a method that can demultiplex an optical OFDM signal with various capacity based on time lens-based optical Fourier transform. The proposed tunable optical OFDM signal demultiplexer is composed of a phase modulator and a tunable chromatic dispersion emulator. The spectrum of the variable capacity OFDM signal is transformed into Nyquist time-division multiplexing pulses with the optical Fourier transform, and the OFDM sub-carrier channels are dumultiplexed in the time-domain. We also propose a simple method for approximating and generating quadratic waveform to drive the phase modulator. After explaining the operating principle of the method and the design of some parameters in detail, we show successful demultiplexing of 4×8 and 4×10 Gbit/s optical OFDM signals with our proposed method as the preliminary investigation results.

  • ArchHDL: A Novel Hardware RTL Modeling and High-Speed Simulation Environment

    Shimpei SATO  Ryohei KOBAYASHI  Kenji KISE  

     
    PAPER-Design Methodology and Platform

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    344-353

    LSIs are generally designed through four stages including architectural design, logic design, circuit design, and physical design. In architectural design and logic design, designers describe their target hardware in RTL. However, they generally use different languages for each phase. Typically a general purpose programming language such as C or C++ and a hardware description language such as Verilog HDL or VHDL are used for architectural design and logic design, respectively. That is time-consuming way for designing a hardware and more efficient design environment is required. In this paper, we propose a new hardware modeling and high-speed simulation environment for architectural design and logic design. Our environment realizes writing and verifying hardware by one language. The environment consists of (1) a new hardware description language called ArchHDL, which enables to simulate hardware faster than Verilog HDL simulation, and (2) a source code translation tool from ArchHDL code to Verilog HDL code. ArchHDL is a new language for hardware RTL modeling based on C++. The key features of this language are that (1) designers describe a combinational circuit as a function and (2) the ArchHDL library realizes non-blocking assignment in C++. Using these features, designers are able to write a hardware transparently from abstracted level description to RTL description in Verilog HDL-like style. Source codes in ArchHDL is converted to Verilog HDL codes by the translation tool and they are used to synthesize for FPGAs or ASICs. As the evaluation of our environment, we implemented a practical many-core processor in ArchHDL and measured the simulation speed on an Intel CPU and an Intel Xeon Phi processor. The simulation speed for the Intel CPU by ArchHDL achieves about 4.5 times faster than the simulation speed by Synopsys VCS. We also confirmed that the RTL simulation by ArchHDL is efficiently parallelized on the Intel Xeon Phi processor. We convert the ArchHDL code to a Verilog HDL code and estimated the hardware utilization on an FPGA. To implement a 48-node many-core processor, 71% of entire resources of a Virtex-7 FPGA are consumed.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • Two-Dimensional Compressed Sensing Using Two-Dimensional Random Permutation for Image Encryption-then-Compression Applications

    Yuqiang CAO  Weiguo GONG  Bo ZHANG  Fanxin ZENG  Sen BAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:2
      Page(s):
    526-530

    Block compressed sensing with random permutation (BCS-RP) has been shown to be very effective for image Encryption-then-Compression (ETC) applications. However, in the BCS-RP scheme, the statistical information of the blocks is disclosed, because the encryption is conducted within each small block of the image. To solve this problem, a two-dimension compressed sensing (2DCS) with 2D random permutation (2DRP) strategy for image ETC applications is proposed in this letter, where the 2DRP strategy is used for encrypting the image and the 2DCS scheme is used for compressing the encrypted image. Compared with the BCS-RP scheme, the proposed approach has two benefits. Firstly, it offers better security. Secondly, it obtains a significant gain of peak signal-to-noise ratio (PSNR) of the reconstructed-images.

  • A RGB-Guided Low-Rank Method for Compressive Hyperspectral Image Reconstruction

    Limin CHEN  Jing XU  Peter Xiaoping LIU  Hui YU  

     
    PAPER-Image

      Vol:
    E101-A No:2
      Page(s):
    481-487

    Compressive spectral imaging (CSI) systems capture the 3D spatiospectral data by measuring the 2D compressed focal plane array (FPA) coded projection with the help of reconstruction algorithms exploiting the sparsity of signals. However, the contradiction between the multi-dimension of the scenes and the limited dimension of the sensors has limited improvement of recovery performance. In order to solve the problem, a novel CSI system based on a coded aperture snapshot spectral imager, RGB-CASSI, is proposed, which has two branches, one for CASSI, another for RGB images. In addition, considering that conventional reconstruction algorithms lead to oversmoothing, a RGB-guided low-rank (RGBLR) method for compressive hyperspectral image reconstruction based on compressed sensing and coded aperture spectral imaging system is presented, in which the available additional RGB information is used to guide the reconstruction and a low-rank regularization for compressive sensing and a non-convex surrogate of the rank is also used instead of nuclear norm for seeking a preferable solution. Experiments show that the proposed algorithm performs better in both PSNR and subjective effects compared with other state-of-art methods.

  • Consensus-Based Distributed Particle Swarm Optimization with Event-Triggered Communication

    Kazuyuki ISHIKAWA  Naoki HAYASHI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    338-344

    This paper proposes a consensus-based distributed Particle Swarm Optimization (PSO) algorithm with event-triggered communications for a non-convex and non-differentiable optimization problem. We consider a multi-agent system whose local communications among agents are represented by a fixed and connected graph. Each agent has multiple particles as estimated solutions of global optima and updates positions of particles by an average consensus dynamics on an auxiliary variable that accumulates the past information of the own objective function. In contrast to the existing time-triggered approach, the local communications are carried out only when the difference between the current auxiliary variable and the variable at the last communication exceeds a threshold. We show that the global best can be estimated in a distributed way by the proposed event-triggered PSO algorithm under a diminishing condition of the threshold for the trigger condition.

  • Multipermutation Codes Correcting a Burst of Deletions

    Peng ZHAO  Jianjun MU  Yucheng HE  Xiaopeng JIAO  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:2
      Page(s):
    535-538

    Codes over permutations and multipermutations have received considerable attention since the rank modulation scheme is presented for flash memories. Deletions in multipermutations often occur due to data synchronization errors. Based on the interleaving of several single-deletion-correcting multipermutation codes, we present a construction of multipermutation codes for correcting a burst of at most t deletions with shift magnitude one for t ≥2. The proposed construction is proved with including an efficient decoding method. A calculation example is provided to validate the construction and its decoding method.

  • Non-Linear Precoding Scheme Using MMSE Based Successive Inter-User Interference Pre-Cancellation and Perturbation Vector Search for Downlink MU-MIMO Systems

    Kenji HOSHINO  Manabu MIKAMI  Sourabh MAITI  Hitoshi YOSHINO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    451-461

    Non-linear precoding (NLP) scheme for downlink multi-user multiple-input multiple-output (DL-MU-MIMO) transmission has received much attention as a promising technology to achieve high capacity within the limited bandwidths available to radio access systems. In order to minimize the required transmission power for DL-MU-MIMO and achieve high spectrum efficiency, Vector Perturbation (VP) was proposed as an optimal NLP scheme. Unfortunately, the original VP suffers from significant computation complexity in detecting the optimal perturbation vector from an infinite number of the candidates. To reduce the complexity with near transmission performance of VP, several recent studies investigated various efficient NLP schemes based on the concept of Tomlinson-Harashima precoding (THP) that applies successive pre-cancellation of inter-user interference (IUI) and offsets the transmission vector based on a modulo operation. In order to attain transmission performance improvement over the original THP, a previous work proposed Minimum Mean Square Error based THP (MMSE-THP) employing IUI successive pre-cancellation based on MMSE criteria. On the other hand, to improve the transmission performance of MMSE-THP, other previous works proposed Ordered MMSE-THP and Lattice-Reduction-Aided MMSE-THP (LRA MMSE-THP). This paper investigates the further transmission performance improvement of Ordered MMSE-THP and LRA MMSE-THP. This paper starts by proposing an extension of MMSE-THP employing a perturbation vector search (PVS), called PVS MMSE-THP as a novel NLP scheme, where the modulo operation is substituted by PVS and a subtraction operation from the transmit signal vector. Then, it introduces an efficient search algorithm of appropriate perturbation vector based on a depth-first branch-and-bound search for PVS MMSE-THP. Next, it also evaluates the transmission performance of PVS MMSE-THP with the appropriate perturbation vector detected by the efficient search algorithm. Computer simulations quantitatively clarify that PVS MMSE-THP achieves better transmission performance than the conventional NLP schemes. Moreover, it also clarifies that PVS MMSE-THP increases the effect of required transmission power reduction with the number of transmit antennas compared to the conventional NLP schemes.

2681-2700hit(18690hit)