The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

17381-17400hit(18690hit)

  • Call Blocking Probabilities of Asymmetric Multi-Connection Circuit Groups with Bandwidth Negotiation and Reservation

    Hajime NAKAMURA  Toshikane ODA  

     
    PAPER

      Vol:
    E78-B No:4
      Page(s):
    551-562

    The recent progress of B-ISDN signaling systems has enabled networks to handle calls which require a wide variety of ATM connection sets. This paper is concerned with the circuit group which handles calls requesting asymmetric forward and backward multi-connections, and has the capability of both bandwidth negotiation and bandwidth reservation as a traffic control for enhancing call blocking performance. A model of the circuit group is first established focusing on the call level characteristics of the group, and then a method based on the reduced load approximation and an approximate analysis of a multirate group is proposed for calculating approximate blocking probabilities. The accuracy of the approximation method is evaluated numerically by comparing with an exact method and simulation. Further the impact of bandwidth negotiation and reservation on call blockings is examined based on numerical examples.

  • Reduction of Surface Clutter by a Polarimetric FM-CW Radar in Underground Target Detection

    Toshifumi MORIYAMA  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  Masakazu SENGOKU  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E78-B No:4
      Page(s):
    625-629

    This paper presents an experimental result of polarimetric detection of objects buried in a sandy ground by a synthetic aperture FM-CW radar. Emphasis is placed on the reduction of surface clutter by the polarimetric radar, which takes account of full polarimetric scattering characteristics. First, the principle of full polarimetric imaging methodology is outlined based on the characteristic polarization states for a specific target together with a polarimetric enhancement factor which discriminates desired and undesired target echo. Then, the polarimetric filtering technique which minimizes a surface reflection is applied to detect a thin metallic plate embedded in a sandy ground, demonstrating the potential capability of reducing surface clutter which leads to an improvement of underground radar performance, and validating the usefulness of FM-CW radar polarimetry.

  • A Compact, High-Efficiency, High-Power DC-DC Converter

    Katsuhiko YAMAMOTO  Tomoji SUGAI  Koichi TANAKA  

     
    PAPER-Power Supply

      Vol:
    E78-B No:4
      Page(s):
    608-615

    A 10-kW (53V/200A), forced-air-cooled DC-DC converter has been developed for fuel cell systems. This converter uses new high-voltage bipolar-mode static induction transistors (BSIT), a new driving method, a zero-voltage-switched pulse-width-modulation technique, and a new litz wire with low AC resistance. It weighs only 16.5kg, has a volume of 26,000cm3, operates at 40kHz, and has a power conversion efficiency of about 95%. The power loss of this converter is 20% less than that of conventional natural-air-cooled DC-DC converters, and the power density is 3 times as high.

  • A Parallel Algorithm for Determining the Congruence of Point Sets in Three-Dimensions

    Tatsuya AKUTSU  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:4
      Page(s):
    321-325

    This paper describes an O(log3n) time O(n/log n) processors parallel algorithm for determining the congruence (exact matching) of two point sets in three-dimensions on a CREW PRAM, where n is the maximum size of the input point sets. Although optimal O(n log n) time sequential algorithms were developed for this problem, no efficient parallel algorithm was known previously. In the algorithm, the original problem is reduced to the two-dimensional congruence problem by computing a three-dimensional point set cps(S) for each input point set S, where cps(S) satisfies the following conditions: 0|cps(S)|12; cps(T(S))T(cps(S)) for all isometric transformations T. The two-dimensional problem can be solved efficiently in parallel using a parallel version of a previously-known sequential algorithm. cps(S) is computed recursively in the following way: the size of a point set is reduced by a constant factor in each recursive step. To reduce the size of a point set, a convex hull is constructed and then it is regarded as a planar graph, so that combinatorial properties of a planar graph are used effectively. A sequential version of the algorithm works in O(n log n) time, so that this paper gives another optimal sequential algorithm. The presented algorithm can be applied for graphs such that each vertex corresponds to a point and each edge corresponds to a line segment connecting its endpoints. Moreover, the algorithm can be modified for computing the canonical form of a point set or a graph.

  • Selectable Traffic Control Scheme for Burst Data Transmission Using TCP/IP on ATM Networks

    Tetsuya YOKOTANI  Tatsuki ICHIHASHI  Chikara MATSUDA  Michihiro ISHIZAKA  

     
    PAPER

      Vol:
    E78-B No:4
      Page(s):
    531-538

    Data communication by using TCP/IP is one of important services on ATM networks. At one approach in traffic control of this service, the dedicated bandwidth for data transfer is not guaranteed and the feedback congestion control to prevent cell loss is performed in the congestion case. However, when a large quantity of data is transferred within a short period, this traffic control cannot be expected to achieve high efficiency. In this case, it is suitable that the dedicated bandwidth is guaranteed by FRP (Fast Reservation Protocol) before the data is transferred. This paper describes that FRP is superior to the feedback congestion control for large size data transmission. Next, it proposes a selectable traffic control which selects adaptively one of the feedback congestion control and FRP.

  • Reverse Modulation Carrier Recovery for Offset QPSK Burst Signals

    Masahiro UMEHIRA  Shuzo KATO  

     
    PAPER-Satellite Communication

      Vol:
    E78-B No:4
      Page(s):
    616-624

    This paper describes reverse modulation carrier recovery with a tank-limiter for Offset QPSK (OQPSK) burst signals. Acquisition performance is discussed taking into account hardware implementation errors in the carrier recovery circuit. The results indicate hardware implementation errors cause a significant recovered carrier phase error during BTR (Bit Timing Recovery) of OQPSK burst signals. A phase error reduction technique by modifying the BTR code for OQPSK burst signals is proposed to improve the acquisition performance. Computer simulation and hardware experiments confirmed its improvement. The performance of a prototype OQPSK burst demodulator using the proposed carrier recovery scheme is also presented.

  • Constraint Satisfaction Approach to Extraction of Japanese Character Regions from Unformatted Document Image

    Keiji GYOHTEN  Noboru BABAGUCHI  Tadahiro KITAHASHI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:4
      Page(s):
    466-475

    In this paper, we present a method for extracting the Japanese printed characters from unformatted document images. This research takes into account the multiple general features specific to the Japanese printed characters. In our method, these features are thought of as the constraints for the regions to be extracted within the constraint satisfaction approach. This is achieved by minimizing a constraint function estimating quantitative satisfaction of the features. Our method is applicable to all kinds of the Japanese documents because it is no need of a priori knowledge about the document layout. We have favorable experimental results for the effectiveness of this method.

  • Group Communications Algorithm for Dynamically Updating in Distributed Systems

    Hiroaki HIGAKI  

     
    PAPER-Computer Networks

      Vol:
    E78-D No:4
      Page(s):
    444-454

    This paper proposes a novel updating technique, dynamically updating, for achieving extension or modification of functions in a distributed system. Usual updating technique requires synchronous suspension for multiple processes for avoiding unspecified reception caused by the conflict of different versions of processes. Thus, this technique needs very high overhead and it must restrict the types of distributed systems, to which it can be applied, to RPC (remote procedure call) type or client-server type. Using the proposed dynamically updating technique, updating management can be invoked asynchronously by each process with assurance of correct execution of the system, i.e., the system can cope with the effect of unspecified reception caused by mixture of different version processes. Therefore, low overhead updating can be achieved in partner type distributed systems, that is more general type including communications systems or computer networks. Dynamically updating technique is implemented by using a novel distributed algorithm that consists of group communication, checkpoint setting, and rollback recovery. By using the algorithm proposed in this paper, rollback recovery can be achieved with the lowest overhead, i.e., a set of checkpoint determines the last global state for consistent rollback recovery and a set of processes that need to rollback simultaneously is the smallest one. This paper also proves the correctness of the proposed algorithm.

  • Optical Path Accommodation Designs Applicable to Large Scale Networks

    Naohide NAGATSU  Yoshiyuki HAMAZUMI  Ken-ichi SATO  

     
    PAPER-Optical Communication

      Vol:
    E78-B No:4
      Page(s):
    597-607

    Optical path technology that employs both WDM/FDM and wavelength routing will play a key role in supporting future high bandwidth transport networks. WP/VWP (Wavelength Path/Virtual Wavelength Path) technologies are very effective in realizing optical path networks. In these networks, since photonic wavelengths are scarce resources, the number of wavelengths required to construct the network must be minimized. However, the wavelength assignment problem, minimizing the number of wavelengths, is an NP-complete problem. Solving this problem heuristically is an important issue for designing large-scale WP/VWP based networks that are also practical. To realize optical path networks, we need to develop path accommodation design algorithms that heuristically solve the wavelength assignment problem. This paper proposes novel path accommodation design algorithms for WP/VWP networks that minimize the number of wavelengths required. We numerically elucidate that the numbers of wavelengths required for active WPs and VWPs are almost equal. When link failure restoration is considered, they are different; more wavelengths are needed with the WP scheme than with the VWP scheme. It is also demonstrated that the proposed algorithms are applicable to a large scale network design.

  • A New Concept of Differential-Difference Amplifier and Its Application Examples for Mixed Analog/Digital VLSI Systems

    Zdzislaw CZARNUL  Tetsuya IIDA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    314-321

    This paper discusses a CMOS differential-difference amplifier circuit suitable for low voltage operation. A new multiple weighted input transconductor circuit structure is suggested to be use in DDA implementation. The proposed DDA can be employed in several analog/digital systems to improve their parameters. Selected examples of the proposed transconductor/DDA applications are also discussed.

  • Connectivity Problems on Area Graphs for Locally Striking Disasters--Direct NA-Connection--

    Hiro ITO  

     
    PAPER-Graphs and Networks

      Vol:
    E78-A No:3
      Page(s):
    363-370

    Connectivity (of node-to-node) is generally used to examine the robustness of graphs. When telecommunication network switches are integrated into logical switching areas, we should examine node-to-area connectivity rather than node-to-node connectivity. In a previous paper, we proposed node-to-area (NA) connectivity using area (subset of nodes) graph. In this paper, we consider a further constraint: "there is a path that does not include other nodes in the source node area." We call this property, directly NA-connected. Application of this constraint makes telecommunications networks robust against locally striking disasters. The problem of finding the maximum number of edge deletions that still preserves the direct NA-connection is shown to be NP-hard. It was shown in our previous paper that an NA-connected spanning tree is easily found; this paper shows that the problem of finding a directly NA-connected spanning tree is also NP-hard. We propose an O(|E||X|) approximation algorithm that finds a directly NA-connected spanning subgraph with an edge nummber not exceeding 2|V|3 for any NA-connected area graph that satisfies a described simple condition. (|V|,|E|,and |X| are the numbers of nodes, edges, and areas, respectively.)

  • High-Level Synthesis of a Multithreaded Processor for Image Generation

    Takao ONOYE  Toshihiro MASAKI  Isao SHIRAKAWA  Hiroaki HIRATA  Kozo KIMURA  Shigeo ASAHARA  Takayuki SAGISHIMA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    322-330

    The design procedure of a multithreaded processor dedicated to the image generation is described, which can be achieved by means of a high-level synthesis tool PARTHENON. The processor employs a multithreaded architecture which is a novel promising approach to the parallel image generation. This paper puts special stress on the high-level synthesis scheme which can simplify the behavioral description for the structure and control of a complex hardware, and therefore enables the design of a complicated mechanism for a multithreaded processor. Implementation results of the synthesis are also shown to demonstrate the performance of the designed processor. This processor greatly improves the throughput of the image generation so far attained by the conventional approach.

  • LP Based Cell Selection with Constraints of Timing, Area, and Power Consumption

    Yutaka TAMIYA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    331-336

    This paper presents a new LP based optimal cell selection method. Optimal cell selection is useful tool for final tuning of LSI designs. It replaces drivabilities of cells, adjusting timing, area, and power constraints. Using the latest and earliest arrival times, it can handle cycle time optimization. We also make a useful initial basis, which speeds up a simplex LP solver by 5 times without any relaxations nor approximations. From experimental results, it can speed up a 13k-transistor circuit of a manual chip design by 17% without any increase of area.

  • Fabrication and Delay Time Analysis of Deep Submicron CMOS Devices

    Yasuo NARA  Manabu DEURA  Ken-ichi GOTO  Tatsuya YAMAZAKI  Tetsu FUKANO  Toshihiro SUGII  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    293-298

    This paper describes the fabrication of 0.1 µm gate length CMOS devices and analysis of delay time by circuit simulation. In order to reduce the gate resistance, TiN capped cobalt salicide technology is applied to the fabrication of 0.1 µm CMOS devices. Gate sheet resistance with a 0.1 µm gate is as low as 5 Ω/sq. Propagation delay times of 0.1 µm and 0.15 µm CMOS inverter are 21 ps and 36 ps. Simulated propagation delay time agreed fairly well with experimental results. For gate length over 0.15 µm, intrinsic delay in CMOS devices is the main dalay factor. This suggests that increasing current drivability is the most efficient way to improve propagation delay time. At 0.1 µm, each parasitic component and intrinsic delay have similar contributions on device speed due to the short channel effect. To improve delay time, we used rapid thermal annealing or a high dose LDD structure. With this structure, drain current increases by more than 1.3 times and simulation predicted a delay time of 28 ps is possible with 0.15 µm CMOS inverters.

  • New Communication Systems via Chaotic Synchronizations and Modulations

    Makoto ITOH  Hiroyuki MURAKAMI  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:3
      Page(s):
    285-290

    In this paper, we demonstrate how Yamakawa's chaotic chips and Chua's circuits can be used to implement a secure communication system. Furthermore, their performance for the secure communication is discussed.

  • Chaotic Behavior in Simple Looped MOS Inverters

    Cong-Kha PHAM  Mamoru TANAKA  Katsufusa SHONO  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:3
      Page(s):
    291-299

    In this paper, bifurcation and chaotic behavior which occur in simple looped MOS inverters with high speed operation are described. The most important point in this work is to change a nonlinear transfer characteristic of a MOS inverter to the nonlinearity generating a chaos. Three types of circuits which include four, three and one MOS inverters, respectively, are proposed. A switched capacitor (SC) circuit to operate sampling holding is added in the loop in each of the circuits. The bifurcation and chaotic behavior have been found along with a variation of an external input, and/or a sampling clock frequency. The bifurcation and chaotic behavior of the proposed simple looped MOS inverters are verified by employing SPICE circuit simulator as well as the experiments. For the first type of four looped CMOS inverters, Lyapunov exponent λ which has the positive regions for the chaotic behavior can be calculated by use of the fitting nonlinear function synthesized from two sigmoid functions. For the second type of three looped CMOS inverters and the third type of one looped MOS inverter, the nonlinear charge/discharge characteristics of the hold capacitor in the SC circuit is utilized efficiently for forming the nonlinearity generating the bifurcation and chaotic behavior. Their bifurcation can be generated by the sampling clock frequency parameter which is controlled easily.

  • On the Solutions of the Diophantine Equation x3y3z3n

    Kenji KOYAMA  

     
    LETTER-Information Security and Cryptography

      Vol:
    E78-A No:3
      Page(s):
    444-449

    We have done a computer search for solutions of the equation x3y3z3n in the range max (|x|, |y|, |z|) 3414387 and 0 n 1000. We have discovered 21 new integer solutions for n {39, 143, 180, 231, 312, 321, 367, 439, 462, 516, 542, 556, 660, 663, 754, 777, 870}. As a result, there are 52 values of n (except n 4 (mod9)) for which no solutions are found.

  • A New Wide Applicable Mobility Model for Device Simulation Taking Physics-Based Carrier Screening Effects into Account

    Koichi FUKUDA  Kenji NISHI  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    281-287

    Carrier mobility is one of the most fundamental parameters in semiconductor device modeling, and many mobility models have already been reported. Especially for numerical device simulators, many local models which are functions of impurity concentration and electric field at each local point have been studied. However, concerning their dependence on impurity concentration including carrier screening effects, these models suffer parameter fitting procedure because of their empirical formulation. In such models, carrier screening effects to the Coulomb potential of ionized impurity are not sufficiently considered, although we can find some models which treat the effects as only a small perturbation term. According to the simple theory of Brooks and Herring, carrier screening effects should be included in strong combination with impurity concentration terms and cannot be treated as additional perturbations. Although Brooks-Herring theory is successful, it also suffers from overestimation of the mobility values at concentration higher than 1018 cm-3 which causes some other complicated phenomena. Therefore there have been no models which directly use Brooks-Herring formula. But it is true that such screening effects should be considered when carrier concentration differs from impurity concentration as in the inversion layers of MOSFETs. We have developed a new mobility model for its dependence of impurity and carrier concentration based on the theory of Brooks-Herring. Brooks-Herring theory is based on simple physics of screened Coulomb potential, and therefore makes the model to include effects of free carriers without an artifitial formula. For high doping regime, an additional term has been introduced in Brooks-Herring formula to correct the high doping effects. Except for this term, the model should be most appropriate for including the carrier screening effects upto the concentration of 1018 cm-3. The new model is implimented in a device simulator, and is applied to the evaluation of MOSFETs especially for the universal curves of inversion layer mobility. Moreoever, the applications to the depletion-type MOSFET confirm the validity of the screening effects. The purpose of this paper is to propose the new mobility model and to show its validity through these applications to MOSFETs.

  • The Double-Sided Rugged Poly Si (DSR) Technology for High Density DRAMs

    Hidetoshi OGIHARA  Masaki YOSHIMARU  Shunji TAKASE  Hiroki KUROGI  Hiroyuki TAMURA  Akio KITA  Hiroshi ONODA  Madayoshi INO  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    288-292

    The Double-Sided Rugged poly Si (DSR) technology has been developed for high density DRAMs. The DSR technology was achieved using transformation of rugged poly Si caused by ion implantation. The DSR can increase the surface area of the storage electrode, because it has rugged surfaces on both upper and lower sides. The 2-FINs STC (STacked Capacitor cell) with DSR was fabricated in the cell size of 0.72 µm2, and it is confirmed that the DSR can increase the surface area 1.8 times larger than that of smooth poly Si. It is expected that 25 fF/bit is obtained with a 300 nm-thick storage electrode. These effects show that sufficient capacitance for 256 Mb DRAMs is obtained with a low storage electrode. It is confirmed that there is no degradation in C-V and I-V characteristics. Moreover, the DSR needs neither complicated process steps nor special technologies. Therefore, the DSR technology is one of the most suitable methods for 256 Mb DRAMs and beyond.

  • Boron Penetration and Hot-Carrier Effects in Surface-Channel PMOSFETs with p+ Poly-Si Gates

    Tohru MOGAMI  Lars E. G. JOHANSSON  Isami SAKAI  Masao FUKUMA  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    255-260

    Surface-channel PMOSFETs are suitable for use in the quarter micron CMOS devices. For surface-channel PMOSFETs with p+ poly-Si gates, boron penetration and hot-carrier effects were investigated. When the annealing temperature is higher and the gate oxide is thinner, a larger threshold voltage shift was observed for p+ poly-Si PMOSFETs, because of boron penetration. Furthermore, PMOSFETs with BF2-implanted gates cause larger boron penetration than those with Boron-implanted gates. Howerer, the PMOSFET lifetime, determined by hot-carrier reliability, does not depend on the degree of boron penetration. Instead, it depends on doping species, that is, BF2 and Boron. PMOSFETs with BF2-implanted gates have about 100 times longer lifetime than those with Boron-implanted gates. The main reason for the longer lifetime of BF2-doped PMOSFETs is the incorporation of fluorine in the gate oxide of the PMOSFET with the BF2-implanted gate, resulting in the smaller electron trapping in the gate oxide. The maximun allowed supply voltage,based on the hot-carrier reliability, is higher than4V for sub-half micron PMOSFETs with BF2- or Boron-implanted poly Si gates.

17381-17400hit(18690hit)