The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

221-240hit(20498hit)

  • CQTXNet: A Modified Xception Network with Attention Modules for Cover Song Identification

    Jinsoo SEO  Junghyun KIM  Hyemi KIM  

     
    LETTER

      Pubricized:
    2023/10/02
      Vol:
    E107-D No:1
      Page(s):
    49-52

    Song-level feature summarization is fundamental for the browsing, retrieval, and indexing of digital music archives. This study proposes a deep neural network model, CQTXNet, for extracting song-level feature summary for cover song identification. CQTXNet incorporates depth-wise separable convolution, residual network connections, and attention models to extend previous approaches. An experimental evaluation of the proposed CQTXNet was performed on two publicly available cover song datasets by varying the number of network layers and the type of attention modules.

  • Unbiased Pseudo-Labeling for Learning with Noisy Labels

    Ryota HIGASHIMOTO  Soh YOSHIDA  Takashi HORIHATA  Mitsuji MUNEYASU  

     
    LETTER

      Pubricized:
    2023/09/19
      Vol:
    E107-D No:1
      Page(s):
    44-48

    Noisy labels in training data can significantly harm the performance of deep neural networks (DNNs). Recent research on learning with noisy labels uses a property of DNNs called the memorization effect to divide the training data into a set of data with reliable labels and a set of data with unreliable labels. Methods introducing semi-supervised learning strategies discard the unreliable labels and assign pseudo-labels generated from the confident predictions of the model. So far, this semi-supervised strategy has yielded the best results in this field. However, we observe that even when models are trained on balanced data, the distribution of the pseudo-labels can still exhibit an imbalance that is driven by data similarity. Additionally, a data bias is seen that originates from the division of the training data using the semi-supervised method. If we address both types of bias that arise from pseudo-labels, we can avoid the decrease in generalization performance caused by biased noisy pseudo-labels. We propose a learning method with noisy labels that introduces unbiased pseudo-labeling based on causal inference. The proposed method achieves significant accuracy gains in experiments at high noise rates on the standard benchmarks CIFAR-10 and CIFAR-100.

  • An Evaluation of the Impact of Distance on Perceptual Quality of Textured 3D Meshes

    Duc NGUYEN  Tran THUY HIEN  Huyen T. T. TRAN  Truong THU HUONG  Pham NGOC NAM  

     
    LETTER

      Pubricized:
    2023/09/25
      Vol:
    E107-D No:1
      Page(s):
    39-43

    Distance-aware quality adaptation is a potential approach to reduce the resource requirement for the transmission and rendering of textured 3D meshes. In this paper, we carry out a subjective experiment to investigate the effects of the distance from the camera on the perceptual quality of textured 3D meshes. Besides, we evaluate the effectiveness of eight image-based objective quality metrics in representing the user's perceptual quality. Our study found that the perceptual quality in terms of mean opinion score increases as the distance from the camera increases. In addition, it is shown that normalized mutual information (NMI), a full-reference objective quality metric, is highly correlated with subjective scores.

  • A Coded Aperture as a Key for Information Hiding Designed by Physics-in-the-Loop Optimization

    Tomoki MINAMATA  Hiroki HAMASAKI  Hiroshi KAWASAKI  Hajime NAGAHARA  Satoshi ONO  

     
    PAPER

      Pubricized:
    2023/09/28
      Vol:
    E107-D No:1
      Page(s):
    29-38

    This paper proposes a novel application of coded apertures (CAs) for visual information hiding. CA is one of the representative computational photography techniques, in which a patterned mask is attached to a camera as an alternative to a conventional circular aperture. With image processing in the post-processing phase, various functions such as omnifocal image capturing and depth estimation can be performed. In general, a watermark embedded as high-frequency components is difficult to extract if captured outside the focal length, and defocus blur occurs. Installation of a CA into the camera is a simple solution to mitigate the difficulty, and several attempts are conducted to make a better design for stable extraction. On the contrary, our motivation is to design a specific CA as well as an information hiding scheme; the secret information can only be decoded if an image with hidden information is captured with the key aperture at a certain distance outside the focus range. The proposed technique designs the key aperture patterns and information hiding scheme through evolutionary multi-objective optimization so as to minimize the decryption error of a hidden image when using the key aperture while minimizing the accuracy when using other apertures. During the optimization process, solution candidates, i.e., key aperture patterns and information hiding schemes, are evaluated on actual devices to account for disturbances that cannot be considered in optical simulations. Experimental results have shown that decoding can be performed with the designed key aperture and similar ones, that decrypted image quality deteriorates as the similarity between the key and the aperture used for decryption decreases, and that the proposed information hiding technique works on actual devices.

  • Frameworks for Privacy-Preserving Federated Learning

    Le Trieu PHONG  Tran Thi PHUONG  Lihua WANG  Seiichi OZAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-D No:1
      Page(s):
    2-12

    In this paper, we explore privacy-preserving techniques in federated learning, including those can be used with both neural networks and decision trees. We begin by identifying how information can be leaked in federated learning, after which we present methods to address this issue by introducing two privacy-preserving frameworks that encompass many existing privacy-preserving federated learning (PPFL) systems. Through experiments with publicly available financial, medical, and Internet of Things datasets, we demonstrate the effectiveness of privacy-preserving federated learning and its potential to develop highly accurate, secure, and privacy-preserving machine learning systems in real-world scenarios. The findings highlight the importance of considering privacy in the design and implementation of federated learning systems and suggest that privacy-preserving techniques are essential in enabling the development of effective and practical machine learning systems.

  • Quality and Transferred Data Based Video Bitrate Control Method for Web-Conferencing Open Access

    Masahiro YOKOTA  Kazuhisa YAMAGISHI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2023/10/13
      Vol:
    E107-B No:1
      Page(s):
    272-285

    In this paper, the quality and transferred data based video bitrate control method for web-conferencing services is proposed, aiming to reduce transferred data by suppressing excessive quality. In web-conferencing services, the video bitrate is generally controlled in accordance with the network conditions (e.g., jitter and packet loss rate) to improve users' quality. However, in such a control, the bitrate is excessively high when the network conditions is sufficiently high (e.g., high throughput and low jitter), which causes an increased transferred data volume. The increased volume of data transferred leads to increased operational costs, such as network costs for service providers. To solve this problem, we developed a method to control the video bitrate of each user to achieve the required quality determined by the service provider. This method is implemented in an actual web-conferencing system and evaluated under various conditions. It was shown that the bitrate could be controlled in accordance with the required quality to reduce the transferred data volume.

  • Performance of Collaborative MIMO Reception with User Grouping Schemes

    Eiku ANDO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/10/23
      Vol:
    E107-B No:1
      Page(s):
    253-261

    This paper proposes user equipment (UE) grouping schemes and evaluates the performance of a scheduling scheme for each formed group in collaborative multiple-input multiple-output (MIMO) reception. In previous research, the criterion for UE grouping and the effects of group scheduling has never been presented. In the UE grouping scheme, two criteria, the base station (BS)-oriented one and the UE-oriented one, are presented. The BS-oriented full search scheme achieves ideal performance though it requires knowledge of the relative positions of all UEs. Therefore, the UE-oriented local search scheme is also proposed. As the scheduling scheme, proportional fairness scheduling is used in resource allocation for each formed group. When the number of total UEs increases, the difference in the number of UEs among groups enlarges. Numerical results obtained through computer simulation show that the throughput per user increases and the fairness among users decreases when the number of UEs in a cell increases in the proposed schemes compared to those of the conventional scheme.

  • Backhaul Prioritized Point-to-Multi-Point Wireless Transmission Using Orbital Angular Momentum Multiplexing

    Tomoya KAGEYAMA  Jun MASHINO  Doohwan LEE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/21
      Vol:
    E107-B No:1
      Page(s):
    232-243

    Orbital angular momentum (OAM) multiplexing technology is being investigated for high-capacity point-to-point (PtP) wireless transmission toward beyond 5G systems. OAM multiplexing is a spatial multiplexing technique that utilizes the twisting of electromagnetic waves. Its advantage is that it reduces the computational complexity of the signal processing on spatial multiplexing. Meanwhile point-to-multi point (PtMP) wireless transmission, such as integrated access and backhaul (IAB) will be expected to simultaneously accommodates a high-capacity prioritized backhaul-link and access-links. In this paper, we study the extension of OAM multiplexing transmission from PtP to PtMP to meet the above requirements. We propose a backhaul prioritized resource control algorithm that maximizes the received signal-to-interference and noise ratio (SINR) of the access-links while maintaining the backhaul-link. The proposed algorithm features adaptive mode selection that takes into account the difference in the received power of each OAM mode depending on the user equipment position and the guaranteed power allocation of the backhaul capacity. We then evaluate the performance of the proposed method through computer simulation. The results show that throughput of the access-links improved compared with the conventional multi-beam multi-user multi-input multi-output (MIMO) techniques while maintaining the throughput of the backhaul-link above the required value with minimal feedback information.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • MSLT: A Scalable Solution for Blockchain Network Transport Layer Based on Multi-Scale Node Management Open Access

    Longle CHENG  Xiaofeng LI  Haibo TAN  He ZHAO  Bin YU  

     
    PAPER-Network

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    185-196

    Blockchain systems rely on peer-to-peer (P2P) overlay networks to propagate transactions and blocks. The node management of P2P networks affects the overall performance and reliability of the system. The traditional structure is based on random connectivity, which is known to be an inefficient operation. Therefore, we propose MSLT, a multiscale blockchain P2P network node management method to improve transaction performance. This approach involves configuring the network to operate at multiple scales, where blockchain nodes are grouped into different ranges at each scale. To minimize redundancy and manage traffic efficiently, neighboring nodes are selected from each range based on a predetermined set of rules. Additionally, a node updating method is implemented to improve the reliability of the network. Compared with existing transmission models in efficiency, utilization, and maximum transaction throughput, the MSLT node management model improves the data transmission performance.

  • Device Type Classification Based on Two-Stage Traffic Behavior Analysis Open Access

    Chikako TAKASAKI  Tomohiro KORIKAWA  Kyota HATTORI  Hidenari OHWADA  

     
    PAPER

      Pubricized:
    2023/10/17
      Vol:
    E107-B No:1
      Page(s):
    117-125

    In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.

  • Resource-Efficient and Availability-Aware Service Chaining and VNF Placement with VNF Diversity and Redundancy

    Takanori HARA  Masahiro SASABE  Kento SUGIHARA  Shoji KASAHARA  

     
    PAPER

      Pubricized:
    2023/10/10
      Vol:
    E107-B No:1
      Page(s):
    105-116

    To establish a network service in network functions virtualization (NFV) networks, the orchestrator addresses the challenge of service chaining and virtual network function placement (SC-VNFP) by mapping virtual network functions (VNFs) and virtual links onto physical nodes and links. Unlike traditional networks, network operators in NFV networks must contend with both hardware and software failures in order to ensure resilient network services, as NFV networks consist of physical nodes and software-based VNFs. To guarantee network service quality in NFV networks, the existing work has proposed an approach for the SC-VNFP problem that considers VNF diversity and redundancy. VNF diversity splits a single VNF into multiple lightweight replica instances that possess the same functionality as the original VNF, which are then executed in a distributed manner. VNF redundancy, on the other hand, deploys backup instances with standby mode on physical nodes to prepare for potential VNF failures. However, the existing approach does not adequately consider the tradeoff between resource efficiency and service availability in the context of VNF diversity and redundancy. In this paper, we formulate the SC-VNFP problem with VNF diversity and redundancy as a two-step integer linear program (ILP) that adjusts the balance between service availability and resource efficiency. Through numerical experiments, we demonstrate the fundamental characteristics of the proposed ILP, including the tradeoff between resource efficiency and service availability.

  • Virtualizing DVFS for Energy Minimization of Embedded Dual-OS Platform

    Takumi KOMORI  Yutaka MASUDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2023/07/12
      Vol:
    E107-A No:1
      Page(s):
    3-15

    Recent embedded systems require both traditional machinery control and information processing, such as network and GUI handling. A dual-OS platform consolidates a real-time OS (RTOS) and general-purpose OS (GPOS) to realize efficient software development on one physical processor. Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial microcontroller showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms. Furthermore, evaluation using a commercial microprocessor achieved a 15 % energy reduction of practical open-source software at best.

  • An Output Voltage Estimation and Regulation System Using Only the Primary-Side Electrical Parameters for Wireless Power Transfer Circuits

    Takahiro FUJITA  Kazuyuki WADA  Kawori SEKINE  

     
    PAPER

      Pubricized:
    2023/07/24
      Vol:
    E107-A No:1
      Page(s):
    16-24

    An output voltage estimation and regulation system for a wireless power transfer (WPT) circuit is proposed. Since the fluctuation of a coupling condition and/or a load may vary the voltage supplied with WPT resulting in a malfunction of wireless-powered devices, the output voltage regulation is needed. If the output voltage is regulated by a voltage regulator in a secondary side of the WPT circuit with fixed input power, the voltage regulator wastes the power to regulate the voltage. Therefore the output voltage regulation using a primary-side control, which adjusts the input power depending on the load and/or the coupling condition, is a promising approach for efficient regulation. In addition, it is desirable to eliminate feedback loop from the secondary side to the primary side from the viewpoint of reducing power dissipation and system complexity. The proposed system can estimate and regulate the output voltage independent of both the coupling and the load variation without the feedback loop. An usable range of the coupling coefficient and the load is improved compared to previous works. The validity of the proposed system is confirmed by the SPICE simulator.

  • Reinforcement Learning for Multi-Agent Systems with Temporal Logic Specifications

    Keita TERASHIMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    31-37

    In a multi-agent system, it is important to consider a design method of cooperative actions in order to achieve a common goal. In this paper, we propose two novel multi-agent reinforcement learning methods, where the control specification is described by linear temporal logic formulas, which represent a common goal. First, we propose a simple solution method, which is directly extended from the single-agent case. In this method, there are some technical issues caused by the increase in the number of agents. Next, to overcome these technical issues, we propose a new method in which an aggregator is introduced. Finally, these two methods are compared by numerical simulations, with a surveillance problem as an example.

  • Ising-Machine-Based Solver for Constrained Graph Coloring Problems

    Soma KAWAKAMI  Yosuke MUKASA  Siya BAO  Dema BA  Junya ARAI  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:1
      Page(s):
    38-51

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. The graph coloring problem, which is one of the difficult combinatorial optimization problems, is to assign a color to each vertex of a graph such that no two vertices connected by an edge have the same color. Although methods to map the graph coloring problem onto the Ising model or quadratic unconstrained binary optimization (QUBO) model are proposed, none of them considers minimizing the number of colors. In addition, there is no Ising-machine-based method considering additional constraints in order to apply to practical problems. In this paper, we propose a mapping method of the graph coloring problem including minimizing the number of colors and additional constraints to the QUBO model. As well as the constraint terms for the graph coloring problem, we firstly propose an objective function term that can minimize the number of colors so that the number of used spins cannot increase exponentially. Secondly, we propose two additional constraint terms: One is that specific vertices have to be colored with specified colors; The other is that specific colors cannot be used more than the number of times given in advance. We theoretically prove that, if the energy of the proposed QUBO mapping is minimized, all the constraints are satisfied and the objective function is minimized. The result of the experiment using an Ising machine showed that the proposed method reduces the number of used colors by up to 75.1% on average compared to the existing baseline method when additional constraints are not considered. Considering the additional constraints, the proposed method can effectively find feasible solutions satisfying all the constraints.

  • Giving a Quasi-Initial Solution to Ising Machines by Controlling External Magnetic Field Coefficients

    Soma KAWAKAMI  Kentaro OHNO  Dema BA  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    52-62

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. It is known that, when a good initial solution is given to an Ising machine, we can finally obtain a solution closer to the optimal solution. However, several Ising machines cannot directly accept an initial solution due to its computational nature. In this paper, we propose a method to give quasi-initial solutions into Ising machines that cannot directly accept them. The proposed method gives the positive or negative external magnetic field coefficients (magnetic field controlling term) based on the initial solutions and obtains a solution by using an Ising machine. Then, the magnetic field controlling term is re-calculated every time an Ising machine repeats the annealing process, and hence the solution is repeatedly improved on the basis of the previously obtained solution. The proposed method is applied to the capacitated vehicle routing problem with an additional constraint (constrained CVRP) and the max-cut problem. Experimental results show that the total path distance is reduced by 5.78% on average compared to the initial solution in the constrained CVRP and the sum of cut-edge weight is increased by 1.25% on average in the max-cut problem.

  • An Anomalous Behavior Detection Method Utilizing IoT Power Waveform Shapes

    Kota HISAFURU  Kazunari TAKASAKI  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    75-86

    In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter for Nonwhite Input Signals

    Koyo KUGIYAMA  Seiji MIYOSHI  

     
    PAPER

      Pubricized:
    2023/07/13
      Vol:
    E107-A No:1
      Page(s):
    87-95

    The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal processing system with the Volterra filter for nonwhite input signals by a statistical-mechanical method. Assuming the self-averaging property with an infinitely long tapped-delay line, we derive simultaneous differential equations that describe the behaviors of macroscopic variables in a deterministic and closed form. We analytically solve the derived equations to reveal the effect of the nonwhiteness of the input signal on the adaptation process. The results for the second-order Volterra filter show that the nonwhiteness decreases the mean-square error (MSE) in the early stages of the adaptation process and increases the MSE in the later stages.

  • An Efficient Signal Detection Method Based on Enhanced Quasi-Newton Iteration for Massive MIMO Systems

    Yifan GUO  Zhijun WANG  Wu GUAN  Liping LIANG  Xin QIU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/07/21
      Vol:
    E107-A No:1
      Page(s):
    169-173

    This letter provides an efficient massive multiple-input multiple-output (MIMO) detector based on quasi-newton methods to speed up the convergence performance under realistic scenarios, such as high user load and spatially correlated channels. The proposed method leverages the information of the Hessian matrix by merging Barzilai-Borwein method and Limited Memory-BFGS method. In addition, an efficient initial solution based on constellation mapping is proposed. The simulation results demonstrate that the proposed method diminishes performance loss to 0.7dB at the bit-error-rate of 10-2 at 128×32 antenna configuration with low complexity, which surpasses the state-of-the-art (SOTA) algorithms.

221-240hit(20498hit)