The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

341-360hit(20498hit)

  • No Reference Quality Assessment of Contrast-Distorted SEM Images Based on Global Features

    Fengchuan XU  Qiaoyue LI  Guilu ZHANG  Yasheng CHANG  Zixuan ZHENG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/07/28
      Vol:
    E106-D No:11
      Page(s):
    1935-1938

    This letter presents a global feature-based method for evaluating the no reference quality of scanning electron microscopy (SEM) contrast-distorted images. Based on the characteristics of SEM images and the human visual system, the global features of SEM images are extracted as the score for evaluating image quality. In this letter, the texture information of SEM images is first extracted using a low-pass filter with orientation, and the amount of information in the texture part is calculated based on the entropy reflecting the complexity of the texture. The singular values with four scales of the original image are then calculated, and the amount of structural change between different scales is calculated and averaged. Finally, the amounts of texture information and structural change are pooled to generate the final quality score of the SEM image. Experimental results show that the method can effectively evaluate the quality of SEM contrast-distorted images.

  • Line Segment Detection Based on False Peak Suppression and Local Hough Transform and Application to Nuclear Emulsion

    Ye TIAN  Mei HAN  Jinyi ZHANG  

    This article has been retracted at the request of the authors.
     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/08/09
      Vol:
    E106-D No:11
      Page(s):
    1854-1867

    This paper mainly proposes a line segment detection method based on pseudo peak suppression and local Hough transform, which has good noise resistance and can solve the problems of short line segment missing detection, false detection, and oversegmentation. In addition, in response to the phenomenon of uneven development in nuclear emulsion tomographic images, this paper proposes an image preprocessing process that uses the “Difference of Gaussian” method to reduce noise and then uses the standard deviation of the gray value of each pixel to bundle and unify the gray value of each pixel, which can robustly obtain the linear features in these images. The tests on the actual dataset of nuclear emulsion tomographic images and the public YorkUrban dataset show that the proposed method can effectively improve the accuracy of convolutional neural network or vision in transformer-based event classification for alpha-decay events in nuclear emulsion. In particular, the line segment detection method in the proposed method achieves optimal results in both accuracy and processing speed, which also has strong generalization ability in high quality natural images.

  • Further Results on Autocorrelation of Vectorial Boolean Functions

    Zeyao LI  Niu JIANG  Zepeng ZHUO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/27
      Vol:
    E106-A No:10
      Page(s):
    1305-1310

    In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $sum_{uin mathbb{F}_2^n,vin mathbb{F}_2^m}mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties.

  • FOM-CDS PUF: A Novel Configurable Dual State Strong PUF Based on Feedback Obfuscation Mechanism against Modeling Attacks

    Hong LI  Wenjun CAO  Chen WANG  Xinrui ZHU  Guisheng LIAO  Zhangqing HE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/29
      Vol:
    E106-A No:10
      Page(s):
    1311-1321

    The configurable Ring oscillator Physical unclonable function (CRO PUF) is the newly proposed strong PUF based on classic RO PUF, which can generate exponential Challenge-Response Pairs (CRPs) and has good uniqueness and reliability. However, existing proposals have low hardware utilization and vulnerability to modeling attacks. In this paper, we propose a Novel Configurable Dual State (CDS) PUF with lower overhead and higher resistance to modeling attacks. This structure can be flexibly transformed into RO PUF and TERO PUF in the same topology according to the parity of the Hamming Weight (HW) of the challenge, which can achieve 100% utilization of the inverters and improve the efficiency of hardware utilization. A feedback obfuscation mechanism (FOM) is also proposed, which uses the stable count value of the ring oscillator in the PUF as the updated mask to confuse and hide the original challenge, significantly improving the effect of resisting modeling attacks. The proposed FOM-CDS PUF is analyzed by building a mathematical model and finally implemented on Xilinx Artix-7 FPGA, the test results show that the FOM-CDS PUF can effectively resist several popular modeling attack methods and the prediction accuracy is below 60%. Meanwhile it shows that the FOM-CDS PUF has good performance with uniformity, Bit Error Rate at different temperatures, Bit Error Rate at different voltages and uniqueness of 53.68%, 7.91%, 5.64% and 50.33% respectively.

  • On Locality of Some Binary LCD Codes

    Ruipan YANG  Ruihu LI  Qiang FU  

     
    PAPER-Coding Theory

      Pubricized:
    2023/04/05
      Vol:
    E106-A No:10
      Page(s):
    1330-1335

    The design of codes for distributed storage systems that protects from node failures has been studied for years, and locally repairable code (LRC) is such a method that gives a solution for fast recovery of node failures. Linear complementary dual code (LCD code) is useful for preventing malicious attacks, which helps to secure the system. In this paper, we combine LRC and LCD code by integration of enhancing security and repair efficiency, and propose some techniques for constructing LCD codes with their localities determined. On the basis of these methods and inheriting previous achievements of optimal LCD codes, we give optimal or near-optimal [n, k, d;r] LCD codes for k≤6 and n≥k+1 with relatively small locality, mostly r≤3. Since all of our obtained codes are distance-optimal, in addition, we show that the majority of them are r-optimal and the other 63 codes are all near r-optimal, according to CM bound.

  • Bayesian Learning-Assisted Joint Frequency Tracking and Channel Estimation for OFDM Systems

    Hong-Yu LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/03/30
      Vol:
    E106-A No:10
      Page(s):
    1336-1342

    Orthogonal frequency division multiplexing (OFDM) is very sensitive to the carrier frequency offset (CFO). The CFO estimation precision heavily makes impacts on the OFDM performance. In this paper, a new Bayesian learning-assisted joint CFO tracking and channel impulse response estimation is proposed. The proposed algorithm is modified from a Bayesian learning-assisted estimation (BLAE) algorithm in the literature. The BLAE is expectation-maximization (EM)-based and displays the estimator mean square error (MSE) lower than the Cramer-Rao bound (CRB) when the CFO value is near zero. However, its MSE value may increase quickly as the CFO value goes away from zero. Hence, the CFO estimator of the BLAE is replaced to solve the problem. Originally, the design criterion of the single-time-sample (STS) CFO estimator in the literature is maximum likelihood (ML)-based. Its MSE performance can reach the CRB. Also, its CFO estimation range can reach the widest range required for a CFO tracking estimator. For a CFO normalized by the sub-carrier spacing, the widest tracking range required is from -0.5 to +0.5. Here, we apply the STS CFO estimator design method to the EM-based Bayesian learning framework. The resultant Bayesian learning-assisted STS algorithm displays the MSE performance lower than the CRB, and its CFO estimation range is between ±0.5. With such a Bayesian learning design criterion, the additional channel noise power and power delay profile must be estimated, as compared with the ML-based design criterion. With the additional channel statistical information, the derived algorithm presents the MSE performance better than the CRB. Two frequency-selective channels are adopted for computer simulations. One has fixed tap weights, and the other is Rayleigh fading. Comparisons with the most related algorithms are also been provided.

  • Transfer Discriminant Softmax Regression with Weighted MMD

    Xinghai LI  Shaofei ZANG  Jianwei MA  Xiaoyu MA  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2023/04/20
      Vol:
    E106-A No:10
      Page(s):
    1343-1353

    As an efficient classical machine learning classifier, the Softmax regression uses cross-entropy as the loss function. Therefore, it has high accuracy in classification. However, when there is inconsistency between the distribution of training samples and test samples, the performance of traditional Softmax regression models will degrade. A transfer discriminant Softmax regression model called Transfer Discriminant Softmax Regression with Weighted MMD (TDS-WMMD) is proposed in this paper. With this method, the Weighted Maximum Mean Divergence (WMMD) is introduced into the objective function to reduce the marginal distribution and conditional distribution between domains both locally and globally, realizing the cross domain transfer of knowledge. In addition, to further improve the classification performance of the model, Linear Discriminant Analysis (LDA) is added to the label iteration refinement process to improve the class separability of the designed method by keeping the same kind of samples together and the different kinds of samples repeling each other. Finally, after conducting classification experiments on several commonly used public transfer learning datasets, the results verify that the designed method can enhance the knowledge transfer ability of the Softmax regression model, and deliver higher classification performance compared with other current transfer learning classifiers.

  • Time-Frequency Characteristics of Ionospheric Clutter in High Frequency Surface Wave Radar during Typhoon Muifa

    Xiaolong ZHENG  Bangjie LI  Daqiao ZHANG  Di YAO  Xuguang YANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/04/18
      Vol:
    E106-A No:10
      Page(s):
    1358-1361

    The ionospheric clutter in High Frequency Surface Wave Radar (HFSWR) is the reflection of electromagnetic waves from the ionosphere back to the receiver, which should be suppressed as much as possible for the primary purpose of target detection in HFSWR. However, ionospheric clutter contains vast quantities of ionospheric state information. By studying ionospheric clutter, some of the relevant ionospheric parameters can be inferred, especially during the period of typhoons, when the ionospheric state changes drastically affected by typhoon-excited gravity waves, and utilizing the time-frequency characteristics of ionospheric clutter at typhoon time, information such as the trend of electron concentration changes in the ionosphere and the direction of the typhoon can be obtained. The results of the processing of the radar data showed the effectiveness of this method.

  • A Network Design Scheme in Delay Sensitive Monitoring Services Open Access

    Akio KAWABATA  Takuya TOJO  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network Management/Operation

      Pubricized:
    2023/04/19
      Vol:
    E106-B No:10
      Page(s):
    903-914

    Mission-critical monitoring services, such as finding criminals with a monitoring camera, require rapid detection of newly updated data, where suppressing delay is desirable. Taking this direction, this paper proposes a network design scheme to minimize this delay for monitoring services that consist of Internet-of-Things (IoT) devices located at terminal endpoints (TEs), databases (DB), and applications (APLs). The proposed scheme determines the allocation of DB and APLs and the selection of the server to which TE belongs. DB and APL are allocated on an optimal server from multiple servers in the network. We formulate the proposed network design scheme as an integer linear programming problem. The delay reduction effect of the proposed scheme is evaluated under two network topologies and a monitoring camera system network. In the two network topologies, the delays of the proposed scheme are 78 and 80 percent, compared to that of the conventional scheme. In the monitoring camera system network, the delay of the proposed scheme is 77 percent compared to that of the conventional scheme. These results indicate that the proposed scheme reduces the delay compared to the conventional scheme where APLs are located near TEs. The computation time of the proposed scheme is acceptable for the design phase before the service is launched. The proposed scheme can contribute to a network design that detects newly added objects quickly in the monitoring services.

  • Theoretical Analysis of Fully Wireless-Power-Transfer Node Networks Open Access

    Hiroshi SAITO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/05/10
      Vol:
    E106-B No:10
      Page(s):
    864-872

    The performance of a fully wireless-power-transfer (WPT) node network, in which each node transfers (and receives) energy through a wireless channel when it has sufficient (and insufficient) energy in its battery, was theoretically analyzed. The lost job ratio (LJR), namely, is the ratio of (i) the amount of jobs that cannot be done due to battery of a node running out to (ii) the amount of jobs that should be done, is used as a performance metric. It describes the effect of the battery of each node running out and how much additional energy is needed. Although it is known that WPT can reduce the probability of the battery running out among a few nodes within a small area, the performance of a fully WPT network has not been clarified. By using stochastic geometry and first-passage-time analysis for a diffusion process, the expected LJR was theoretically derived. Numerical examples demonstrate that the key parameters determining the performance of the network are node density, threshold switching of statuses between “transferring energy” and “receiving energy,” and the parameters of power conversion. They also demonstrate the followings: (1) The mean energy stored in the node battery decreases in the networks because of the loss caused by WPT, and a fully WPT network cannot decrease the probability of the battery running out under the current WPT efficiency. (2) When the saturation value of power conversion increases, a fully WPT network can decrease the probability of the battery running out although the mean energy stored in the node battery still decreases in the networks. This result is explained by the fact that the variance of stored energy in each node battery becomes smaller due to transfer of energy from nodes of sufficient energy to nodes of insufficient energy.

  • Virtual Network Function Placement Model Considering Both Availability and Probabilistic Protection for Service Delay

    Shinya HORIMOTO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/04/13
      Vol:
    E106-B No:10
      Page(s):
    891-902

    This paper proposes a virtual network function (VNF) placement model considering both availability and probabilistic protection for the service delay to minimize the service deployment cost. Both availability and service delay are key requirements of services; a service provider handles the VNF placement problem with the goal of minimizing the service deployment cost while meeting these and other requirements. The previous works do not consider the delay of each route which the service can take when considering both availability and delay in the VNF placement problem; only the maximum delay was considered. We introduce probabilistic protection for service delay to minimize the service deployment cost with availability. The proposed model considers that the probability that the service delay, which consists of networking delay between hosts and processing delay in each VNF, exceeds its threshold is constrained within a given value; it also considers that the availability is constrained within a given value. We develop a two-stage heuristic algorithm to solve the VNF placement problem; it decides primary VNF placement by solving mixed-integer second-order cone programming in the first stage and backup VNF placement in the second stage. We observe that the proposed model reduces the service deployment cost compared to a baseline that considers the maximum delay by up to 12%, and that it obtains a feasible solution while the baseline does not in some examined situations.

  • Multi-Objective Design of EMI Filter with Uncertain Parameters by Preference Set-Based Design Method and Polynomial Chaos Method

    Duc Chinh BUI  Yoshiki KAYANO  Fengchao XIAO  Yoshio KAMI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/06/30
      Vol:
    E106-B No:10
      Page(s):
    959-968

    Today's electronic devices must meet many requirements, such as those related to performance, limits to the radiated electromagnetic field, size, etc. For such a design, the requirement is to have a solution that simultaneously meets multiple objectives that sometimes include conflicting requirements. In addition, it is also necessary to consider uncertain parameters. This paper proposes a new combination of statistical analysis using the Polynomial Chaos (PC) method for dealing with the random and multi-objective satisfactory design using the Preference Set-based Design (PSD) method. The application in this paper is an Electromagnetic Interference (EMI) filter for a practical case, which includes plural element parameters and uncertain parameters, which are resistors at the source and load, and the performances of the attenuation characteristics. The PC method generates simulation data with high enough accuracy and good computational efficiency, and these data are used as initial data for the meta-modeling of the PSD method. The design parameters of the EMI filter, which satisfy required performances, are obtained in a range by the PSD method. The authors demonstrate the validity of the proposed method. The results show that applying a multi-objective design method using PSD with a statistical method using PC to handle the uncertain problem can be applied to electromagnetic designs to reduce the time and cost of product development.

  • Experimental Investigation on Electromagnetic Immunity and Conduction Immunity of Digital Control Circuit Based on ARM

    Yang XIAO  Zhongyuan ZHOU  Xiang ZHOU  Qi ZHOU  Mingjie SHENG  Yixing GU  Mingliang YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/05/19
      Vol:
    E106-B No:10
      Page(s):
    969-978

    This paper analyzes the typical functions of digital control circuit and its function modules, and develops a set of digital control circuit equipment based on Advanced RISC Machines (ARM) with typical function modules, including principle design, interference injection trace design, function design, and study the failure mode and threshold of typical function modules. Based on continuous wave (CW) and pulse wave, the direct power injection (DPI) method is used to test the conduction immunity of the digital control circuit, and the failure mode and sensitivity threshold of the digital control circuit are quantitatively obtained. This method can provide experimental verification for the immunity ability of the digital control circuit to different electromagnetic interference.

  • High-Quality and Low-Complexity Polar-Coded Radio-Wave Encrypted Modulation Utilizing Multipurpose Frozen Bits Open Access

    Keisuke ASANO  Takumi ABE  Kenta KATO  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/03/28
      Vol:
    E106-B No:10
      Page(s):
    987-996

    In recent years, physical layer security (PLS), which utilizes the inherent randomness of wireless signals to perform encryption at the physical layer, has attracted attention. We propose chaos modulation as a PLS technique. In addition, a method for encryption using a special encoder of polar codes has been proposed (PLS-polar), in which PLS can be easily achieved by encrypting the frozen bits of a polar code. Previously, we proposed a chaos-modulated polar code transmission method that can achieve high-quality and improved-security transmission using frozen bit encryption in polar codes. However, in principle, chaos modulation requires maximum likelihood sequence estimation (MLSE) for demodulation, and a large number of candidates for MLSE causes characteristic degradation in the low signal-to-noise ratio region in chaos polar transmission. To address this problem, in this study, we propose a versatile frozen bit method for polar codes, in which the frozen bits are also used to reduce the number of MLSE candidates for chaos demodulation. The numerical results show that the proposed method shows a performance improvement by 1.7dB at a block error rate of 10-3 with a code length of 512 and a code rate of 0.25 compared with that of conventional methods. We also show that the complexity of demodulation can be reduced to 1/16 of that of the conventional method without degrading computational security. Furthermore, we clarified the effective region of the proposed method when the code length and code rate were varied.

  • Optimization of Channel Segregation-Based Fractional Frequency Reuse for Inter-Cell Interference Coordination in Cellular Ultra-Dense RAN

    Hidenori MATSUO  Ryo TAKAHASHI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/10
      Vol:
    E106-B No:10
      Page(s):
    997-1003

    To cope with ever growing mobile data traffic, we recently proposed a concept of cellular ultra-dense radio access network (RAN). In the cellular ultra-dense RAN, a number of distributed antennas are deployed in the base station (BS) coverage area (cell) and user-clusters are formed to perform small-scale distributed multiuser multi-input multi-output (MU-MIMO) transmission and reception in each user-cluster in parallel using the same frequency resource. We also proposed a decentralized interference coordination (IC) framework to effectively mitigate both intra-cell and inter-cell interferences caused in the cellular ultra-dense RAN. The inter-cell IC adopted in this framework is the fractional frequency reuse (FFR), realized by applying the channel segregation (CS) algorithm, and is called CS-FFR in this paper. CS-FFR divides the available bandwidth into several sub-bands and allocates multiple sub-bands to different cells. In this paper, focusing on the optimization of the CS-FFR, we find by computer simulation the optimum bandwidth division number and the sub-band allocation ratio to maximize the link capacity. We also discuss the convergence speed of CS-FFR in a cellular ultra-dense RAN.

  • Low Complexity Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access Open Access

    Satoshi DENNO  Taichi YAMAGAMI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/08
      Vol:
    E106-B No:10
      Page(s):
    1004-1014

    This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.

  • Highly-Efficient Low-Latency HARQ Built on NOMA for URLLC: Radio Resource Allocation and Transmission Rate Control Aspects Open Access

    Ryota KOBAYASHI  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/22
      Vol:
    E106-B No:10
      Page(s):
    1015-1023

    Hybrid automatic repeat request (HARQ) is an essential technology that efficiently reduces the transmission error rate. However, for ultra-reliable low latency communications (URLLC) in the 5th generation mobile communication systems and beyond, the increase in latency due to retransmission must be minimized in HARQ. In this paper, we propose a highly-efficient low-latency HARQ method built on non-orthogonal multiple access (NOMA) for URLLC while minimizing the performance loss for coexisting services (use cases) such as enhanced mobile broadband (eMBB). The proposed method can be seen as an extension of the conventional link-level non-orthogonal HARQ to the system-level protocol. This mitigates the problems of the conventional link-level non-orthogonal HARQ, which are decoding error under poor channel conditions and an increase in transmission delay due to restrictions in retransmission timing. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort eMBB packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. This is achieved using a weighted channel-aware resource allocator (scheduler). The inter-packet interference multiplexed in the same channel is removed using a successive interference canceller (SIC) at the receiver. Furthermore, the transmission rates for the initial transmission and retransmission are controlled in an appropriate manner for each service in order to deal with decoding errors caused by error in transmission rate control originating from a time varying channel. We show that the proposed method significantly improves the overall performance of a system that simultaneously provides eMBB and URLLC services.

  • Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications

    Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2023/04/17
      Vol:
    E106-B No:10
      Page(s):
    1024-1033

    Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.

  • Design of CMOS Circuits for Electrophysiology Open Access

    Nick VAN HELLEPUTTE  Carolina MORA-LOPEZ  Chris VAN HOOF  

     
    INVITED PAPER

      Pubricized:
    2023/07/11
      Vol:
    E106-C No:10
      Page(s):
    506-515

    Electrophysiology, which is the study of the electrical properties of biological tissues and cells, has become indispensable in modern clinical research, diagnostics, disease monitoring and therapeutics. In this paper we present a brief history of this discipline and how integrated circuit design shaped electrophysiology in the last few decades. We will discuss how biopotential amplifier design has evolved from the classical three-opamp architecture to more advanced high-performance circuits enabling long-term wearable monitoring of the autonomous and central nervous system. We will also discuss how these integrated circuits evolved to measure in-vivo neural circuits. This paper targets readers who are new to the domain of biopotential recording and want to get a brief historical overview and get up to speed on the main circuit design concepts for both wearable and in-vivo biopotential recording.

  • Encouraging Innovation in Analog IC Design Open Access

    Chris MANGELSDORF  

     
    INVITED PAPER

      Pubricized:
    2023/08/01
      Vol:
    E106-C No:10
      Page(s):
    516-520

    Recent years have seen a decline in the art of analog IC design even though analog interface and analog signal processing remain just as essential as ever. While there are many contributing factors, four specific pressures which contribute the most to the loss of creativity and innovation within analog practice are examined: process evolution, risk aversion, digitally assisted analog, and corporate culture. Despite the potency of these forces, none are found to be insurmountable obstacles to reinvigorating the industry. A more creative future is within our reach.

341-360hit(20498hit)