The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

2341-2360hit(8214hit)

  • Study of Reducing Circuit Scale Associated with Bit Depth Expansion Using Predictive Gradation Detection Algorithm

    Akihiro NAGASE  Nami NAKANO  Masako ASAMURA  Jun SOMEYA  Gosuke OHASHI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:5
      Page(s):
    1283-1292

    The authors have evaluated a method of expanding the bit depth of image signals called SGRAD, which requires fewer calculations, while degrading the sharpness of images less. Where noise is superimposed on image signals, the conventional method for obtaining high bit depth sometimes incorrectly detects the contours of images, making it unable to sufficiently correct the gradation. Requiring many line memories is also an issue with the conventional method when applying the process to vertical gradation. As a solution to this particular issue, SGRAD improves the method of detecting contours with transiting gradation to effectively correct the gradation of image signals which noise is superimposed on. In addition, the use of a prediction algorithm for detecting gradation reduces the scale of the circuit with less correction of the vertical gradation.

  • Adaptive Subscale Entropy Based Quantification of EEG

    Young-Seok CHOI  

     
    LETTER-Biological Engineering

      Vol:
    E97-D No:5
      Page(s):
    1398-1401

    This letter presents a new entropy measure for electroencephalograms (EEGs), which reflects the underlying dynamics of EEG over multiple time scales. The motivation behind this study is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing an EEG to be decomposed into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, the result is an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.

  • Class Prior Estimation from Positive and Unlabeled Data

    Marthinus Christoffel DU PLESSIS  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:5
      Page(s):
    1358-1362

    We consider the problem of learning a classifier using only positive and unlabeled samples. In this setting, it is known that a classifier can be successfully learned if the class prior is available. However, in practice, the class prior is unknown and thus must be estimated from data. In this paper, we propose a new method to estimate the class prior by partially matching the class-conditional density of the positive class to the input density. By performing this partial matching in terms of the Pearson divergence, which we estimate directly without density estimation via lower-bound maximization, we can obtain an analytical estimator of the class prior. We further show that an existing class prior estimation method can also be interpreted as performing partial matching under the Pearson divergence, but in an indirect manner. The superiority of our direct class prior estimation method is illustrated on several benchmark datasets.

  • Improvements of Local Descriptor in HOG/SIFT by BOF Approach

    Zhouxin YANG  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:5
      Page(s):
    1293-1303

    Numerous studies have been focusing on the improvement of bag of features (BOF), histogram of oriented gradient (HOG) and scale invariant feature transform (SIFT). However, few works have attempted to learn the connection between them even though the latter two are widely used as local feature descriptor for the former one. Motivated by the resemblance between BOF and HOG/SIFT in the descriptor construction, we improve the performance of HOG/SIFT by a) interpreting HOG/SIFT as a variant of BOF in descriptor construction, and then b) introducing recently proposed approaches of BOF such as locality preservation, data-driven vocabulary, and spatial information preservation into the descriptor construction of HOG/SIFT, which yields the BOF-driven HOG/SIFT. Experimental results show that the BOF-driven HOG/SIFT outperform the original ones in pedestrian detection (for HOG), scene matching and image classification (for SIFT). Our proposed BOF-driven HOG/SIFT can be easily applied as replacements of the original HOG/SIFT in current systems since they are generalized versions of the original ones.

  • ParaLite: A Parallel Database System for Data-Intensive Workflows

    Ting CHEN  Kenjiro TAURA  

     
    PAPER-Computer System

      Vol:
    E97-D No:5
      Page(s):
    1211-1224

    To better support data-intensive workflows which are typically built out of various independently developed executables, this paper proposes extensions to parallel database systems called User-Defined eXecutables (UDX) and collective queries. UDX facilitates the description of workflows by enabling seamless integrations of external executables into SQL statements without any efforts to write programs confirming to strict specifications of databases. A collective query is an SQL query whose results are distributed to multiple clients and then processed by them in parallel, using arbitrary UDX. It provides efficient parallelization of executables through the data transfer optimization algorithms that distribute query results to multiple clients, taking both communication cost and computational loads into account. We implement this concept in a system called ParaLite, a parallel database system based on a popular lightweight database SQLite. Our experiments show that ParaLite has several times higher performance over Hive for typical SQL tasks and has 10x speedup compared to a commercial DBMS for executables. In addition, this paper studies a real-world text processing workflow and builds it on top of ParaLite, Hadoop, Hive and general files. Our experiences indicate that ParaLite outperforms other systems in both productivity and performance for the workflow.

  • Local Frequency Folding Method for Fast PN-Code Acquisition

    Wenquan FENG  Xiaodi XING  Qi ZHAO  ZuLin WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1072-1079

    The large Doppler offset that exists in high dynamic environments poses a serious impediment to the acquisition of direct sequence spread spectrum (DSSS) signals. To ensure acceptable detection probabilities, the frequency space has to be finely divided, which leads to complicated acquisition structures and excessively long acquisition time at low SNR. A local frequency folding (LFF) method designed for combined application with established techniques dedicated to PN-code synchronization is proposed in this paper. Through modulating local PN-code block with a fixed waveform obtained by folding all frequency cells together, we eliminate the need for frequency search and ease the workload of acquisition. We also analyze the performance of LFF and find that the detection performance degradation from folding can be compensated by FFT-based coherent integration. The study is complemented with numerical simulations showing that the proposed method has advantages over unfolding methods with respect to detection probability and mean acquisition time, and the advantage becomes obvious but limited if the folded number gets larger.

  • Multipacket-per-Slot Reservation-Based Random Access Protocol with MD and ARQ

    Tomoya TANDAI  Hiroshi SUZUKI  Kazuhiko FUKAWA  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1059-1071

    This paper proposes a multipacket-per-slot reservation-based random access protocol with multiuser detection (MD) and automatic repeat request (ARQ), called MPRMD, and analyzes its performance by computer simulations. In MPRMD, before data packet (DP) transmission, a user terminal (UT) transmits a small access request packet (AP) that is composed of an orthogonal preamble sequence and a UT identifier (UT-ID) in a randomly selected minislot during a short dedicated period. Even when several APs collide, a base station (BS) distinguishes them by matched filtering against the preamble part and then extracts the UT-IDs after separating each AP by MD. If the APs are not successfully detected, a small number of minislots are additionally arranged to retransmit them. Thus, by using MD under AP crowded conditions, BS can maximally detect the access requests in a short period, which results in reducing the overhead. Furthermore, in the assignment of a slot, BS intentionally assigns one slot to multiple UTs in order to enhance the efficiency and separates UT's DPs by MD. Since MPRMD can detect a multitude of access requests by utilizing MD in the short period and efficiently assign the slot to separable DPs by MD, it can enhance the system throughput. Computer simulations are conducted to demonstrate the effectiveness of MPRMD. It is shown that the maximum throughputs of MPRMD with the average SNR of 30dB reach 1.4 and 1.7 packets/slot when a data packet is 10 times and 50 times as long as a control packet, respectively.

  • Connectivity of Ad Hoc Networks with Random Mobility Models

    Yan-tao LIU  Ying TIAN  Jian-ping AN  Heng LIU  

     
    PAPER-Network

      Vol:
    E97-B No:5
      Page(s):
    952-959

    We analyze the connectivity of simulation ad hoc networks, which use random mobility models. Based on the theorem of minimum degree, the study of connectivity probability is converted into an analysis of the probability of minimum node degree. Detailed numerical analyses are performed for three mobility models: random waypoint model, random direction model, and random walk model. For each model, the connectivity probability is calculated and its relations with the communication range r and the node number n are illustrated. Results of the analyses show that with the same network settings, the connectivity performance decreases in the following order: random walk model, random direction model, and random waypoint model. This is because of the non-uniform node distribution in the last two models. Our work can be used by researchers to choose, modify, or apply a reasonable mobility model for network simulations.

  • Feature-Level Fusion of Finger Veins and Finger Dorsal Texture for Personal Authentication Based on Orientation Selection

    Wenming YANG  Guoli MA  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:5
      Page(s):
    1371-1373

    This study proposes a feature-level fusion method that uses finger veins (FVs) and finger dorsal texture (FDT) for personal authentication based on orientation selection (OS). The orientation codes obtained by the filters correspond to different parts of an image (foreground or background) and thus different orientations offer different levels of discrimination performance. We have conducted an orientation component analysis on both FVs and FDT. Based on the analysis, an OS scheme is devised which combines the discriminative orientation features of both modalities. Our experiments demonstrate the effectiveness of the proposed method.

  • An Improved Low Complexity Detection Scheme in MIMO-OFDM Systems

    Jang-Kyun AHN  Hyun-Woo JANG  Hyoung-Kyu SONG  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:5
      Page(s):
    1336-1339

    Although the QR decomposition M algorithm (QRD-M) detection reduces the complexity and achieves near-optimal detection performance, its complexity is still very high. In the proposed scheme, the received symbols through bad channel conditions are arranged in reverse order due to the performance of a system depending on the detection capability of the first layer. Simulation results show that the proposed scheme provides almost the same performance as the QRD-M. Moreover, the complexity is about 33.6% of the QRD-M for a bit error rate (BER) with 4×4 multi input multi output (MIMO) system.

  • An Improved Video Identification Scheme Based on Video Tomography

    Qing-Ge JI  Zhi-Feng TAN  Zhe-Ming LU  Yong ZHANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:4
      Page(s):
    919-927

    In recent years, with the popularization of video collection devices and the development of the Internet, it is easy to copy original digital videos and distribute illegal copies quickly through the Internet. It becomes a critical task to uphold copyright laws, and this problem will require a technical solution. Therefore, as a challenging problem, copy detection or video identification becomes increasingly important. The problem addressed here is to identify a given video clip in a given set of video sequences. In this paper, an extension to the video identification approach based on video tomography is presented. First, the feature extraction process is modified to enhance the reliability of the shot signature with its size unchanged. Then, a new similarity measurement between two shot signatures is proposed to address the problem generated by the original approach when facing the query shot with a short length. In addition, the query scope is extended from one shot only to one clip (several consecutive shots) by giving a new definition of similarity between two clips and describing a search algorithm which can save much of the computation cost. Experimental results show that the proposed approach is more suitable for identifying shots with short lengths than the original approach. The clip query approach performs well in the experiment and it also shows strong robustness to data loss.

  • File and Task Abstraction in Task Workflow Patterns for File Recommendation Using File-Access Log Open Access

    Qiang SONG  Takayuki KAWABATA  Fumiaki ITOH  Yousuke WATANABE  Haruo YOKOTA  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    634-643

    The numbers of files in file systems have increased dramatically in recent years. Office workers spend much time and effort searching for the documents required for their jobs. To reduce these costs, we propose a new method for recommending files and operations on them. Existing technologies for recommendation, such as collaborative filtering, suffer from two problems. First, they can only work with documents that have been accessed in the past, so that they cannot recommend when only newly generated documents are inputted. Second, they cannot easily handle sequences involving similar or differently ordered elements because of the strict matching used in the access sequences. To solve these problems, such minor variations should be ignored. In our proposed method, we introduce the concepts of abstract files as groups of similar files used for a similar purpose, abstract tasks as groups of similar tasks, and frequent abstract workflows grouped from similar workflows, which are sequences of abstract tasks. In experiments using real file-access logs, we confirmed that our proposed method could extract workflow patterns with longer sequences and higher support-count values, which are more suitable as recommendations. In addition, the F-measure for the recommendation results was improved significantly, from 0.301 to 0.598, compared with a method that did not use the concepts of abstract tasks and abstract workflows.

  • New Metrics for Prioritized Interaction Test Suites

    Rubing HUANG  Dave TOWEY  Jinfu CHEN  Yansheng LU  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:4
      Page(s):
    830-841

    Combinatorial interaction testing has been well studied in recent years, and has been widely applied in practice. It generally aims at generating an effective test suite (an interaction test suite) in order to identify faults that are caused by parameter interactions. Due to some constraints in practical applications (e.g. limited testing resources), for example in combinatorial interaction regression testing, prioritized interaction test suites (called interaction test sequences) are often employed. Consequently, many strategies have been proposed to guide the interaction test suite prioritization. It is, therefore, important to be able to evaluate the different interaction test sequences that have been created by different strategies. A well-known metric is the Average Percentage of Combinatorial Coverage (shortly APCCλ), which assesses the rate of interaction coverage of a strength λ (level of interaction among parameters) covered by a given interaction test sequence S. However, APCCλ has two drawbacks: firstly, it has two requirements (that all test cases in S be executed, and that all possible λ-wise parameter value combinations be covered by S); and secondly, it can only use a single strength λ (rather than multiple strengths) to evaluate the interaction test sequence - which means that it is not a comprehensive evaluation. To overcome the first drawback, we propose an enhanced metric Normalized APCCλ (NAPCC) to replace the APCCλ Additionally, to overcome the second drawback, we propose three new metrics: the Average Percentage of Strengths Satisfied (APSS); the Average Percentage of Weighted Multiple Interaction Coverage (APWMIC); and the Normalized APWMIC (NAPWMIC). These metrics comprehensively assess a given interaction test sequence by considering different interaction coverage at different strengths. Empirical studies show that the proposed metrics can be used to distinguish different interaction test sequences, and hence can be used to compare different test prioritization strategies.

  • Prediction-Based Cross-Layer Resource Allocation for Wireless Multi-Hop Networks with Outdated CSI

    Wei FENG  Suili FENG  Yuehua DING  Yongzhong ZHANG  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    746-754

    The rapid variation of wireless channels and feedback delay make the available channel state information (CSI) outdated in dynamic wireless multi-hop networks, which significantly degrades the accuracy of cross-layer resource allocation. To deal with this problem, a cross-layer resource allocation scheme is proposed for wireless multi-hop networks by taking the outdated CSI into account and basing compensation on the results of channel prediction. The cross-layer resource allocation is formulated as a network utility maximization problem, which jointly considers congestion control, channel allocation, power control, scheduling and routing with the compensated CSI. Based on a dual decomposition approach, the problem is solved in a distributed manner. Simulation results show that the proposed algorithm can reasonably allocate the resources, and significantly improve the throughput and energy efficiency in the network.

  • Automatic Rectification of Processor Design Bugs Using a Scalable and General Correction Model

    Amir Masoud GHAREHBAGHI  Masahiro FUJITA  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:4
      Page(s):
    852-863

    This paper presents a method for automatic rectification of design bugs in processors. Given a golden sequential instruction-set architecture model of a processor and its erroneous detailed cycle-accurate model at the micro-architecture level, we perform symbolic simulation and property checking combined with concrete simulation iteratively to detect the buggy location and its corresponding fix. We have used the truth-table model of the function that is required for correction, which is a very general model. Moreover, we do not represent the truth-table explicitly in the design. We use, instead, only the required minterms, which are obtained from the output of our backend formal engine. This way, we avoid adding any new variable for representing the truth-table. Therefore, our correction model is scalable to the number of inputs of the truth-table that could grow exponentially. We have shown the effectiveness of our method on a complex out-of-order superscalar processor supporting atomic execution of instructions. Our method reduces the model size for correction by 6.0x and total correction time by 12.6x, on average, compared to our previous work.

  • Effect of Multivariate Cauchy Mutation in Evolutionary Programming

    Chang-Yong LEE  Yong-Jin PARK  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:4
      Page(s):
    821-829

    In this paper, we apply a mutation operation based on a multivariate Cauchy distribution to fast evolutionary programming and analyze its effect in terms of various function optimizations. The conventional fast evolutionary programming in-cooperates the univariate Cauchy mutation in order to overcome the slow convergence rate of the canonical Gaussian mutation. For a mutation of n variables, while the conventional method utilizes n independent random variables from a univariate Cauchy distribution, the proposed method adopts n mutually dependent random variables that satisfy a multivariate Cauchy distribution. The multivariate Cauchy distribution naturally has higher probabilities of generating random variables in inter-variable regions than the univariate Cauchy distribution due to the mutual dependence among variables. This implies that the multivariate Cauchy random variable enhances the search capability especially for a large number of correlated variables, and, as a result, is more appropriate for optimization schemes characterized by interdependence among variables. In this sense, the proposed mutation possesses the advantage of both the univariate Cauchy and Gaussian mutations. The proposed mutation is tested against various types of real-valued function optimizations. We empirically find that the proposed mutation outperformed the conventional Cauchy and Gaussian mutations in the optimization of functions having correlations among variables, whereas the conventional mutations showed better performance in functions of uncorrelated variables.

  • Discovery of the Optimal Trust Inference Path for Online Social Networks Open Access

    Yao MA  Hongwei LU  Zaobin GAN  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    673-684

    Analysis of the trust network proves beneficial to the users in Online Social Networks (OSNs) for decision-making. Since the construction of trust propagation paths connecting unfamiliar users is the preceding work of trust inference, it is vital to find appropriate trust propagation paths. Most of existing trust network discovery algorithms apply the classical exhausted searching approaches with low efficiency and/or just take into account the factors relating to trust without regard to the role of distrust relationships. To solve the issues, we first analyze the trust discounting operators with structure balance theory and validate the distribution characteristics of balanced transitive triads. Then, Maximum Indirect Referral Belief Search (MIRBS) and Minimum Indirect Functional Uncertainty Search (MIFUS) strategies are proposed and followed by the Optimal Trust Inference Path Search (OTIPS) algorithms accordingly on the basis of the bidirectional versions of Dijkstra's algorithm. The comparative experiments of path search, trust inference and edge sign prediction are performed on the Epinions data set. The experimental results show that the proposed algorithm can find the trust inference path with better efficiency and the found paths have better applicability to trust inference.

  • A Photovoltaic-Assisted CMOS Rectifier for Synergistic Energy Harvesting from Ambient Radio Waves

    Koji KOTANI  Takumi BANDO  Yuki SASAKI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    245-252

    A photovoltaic (PV)-assisted CMOS rectifier was developed for efficient energy harvesting from ambient radio waves as one example of the synergistic energy harvesting concept. The rectifier operates truly synergistically. A pn junction diode acting as a PV cell converts light energy to DC bias voltage, which compensates the threshold voltage (Vth) of the MOSFETs and enhances the radio frequency (RF) to DC power conversion efficiency (PCE) of the rectifier even under extremely low input power conditions. The indoor illuminance level was sufficient to generate gate bias voltages to compensate Vths. Although the same PV cell structure for biasing nMOS and pMOS transistors was used, photo-generated bias voltages were found to become unbalanced due to the two-layered pn junction structures and parasitic bipolar transistor action. Under typical indoor lighting conditions, a fabricated PV-assisted rectifier achieved a PCE greater than 20% at an RF input power of -20dBm, a frequency of 920MHz, and an output load of 47kΩ. This PCE value is twice the value obtained by a conventional rectifier without PV assistance. In addition, it was experimentally revealed that if symmetric biasing voltages for nMOS and pMOS transistors were available, the PCE would increase even further.

  • Injection Locked Charge-Pump PLL with a Replica of the Ring Oscillator

    Jeonghoon HAN  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    316-324

    This paper derives a maximum lock range of an injection locked ring oscillator in a direct injection method and presents an injection locked charge-pump phase-locked loop (CPPLL) with a replica of a ring oscillator. The proposed injection-locked PLL separates the injection-locked VCO from the continuous phase-tracking loop of the PLL such that can provide stable lock-state maintenance and tolerance to temperature and supply voltage variation. The measurement results show that the proposed injection-locked PLL can be tolerable to voltage variation of 11.2% in supply voltage of 1.2V. In-band noises of the injection-locked oscillator at offset frequencies of 10kHz and 100kHz are -108.2dBc/Hz and -114.6dBc/Hz, respectively.

  • A Novel Intrusion Tolerant System Using Live Migration

    Yongjoo SHIN  Sihu SONG  Yunho LEE  Hyunsoo YOON  

     
    LETTER-Dependable Computing

      Vol:
    E97-D No:4
      Page(s):
    984-988

    This letter proposes a novel intrusion tolerant system consisting of several virtual machines (VMs) that refresh the target system periodically and by live migration, which monitors the many features of the VMs to identify and replace exhausted VMs. The proposed scheme provides adequate performance and dependability against denial of service (DoS) attacks. To show its efficiency and security, we conduct experiments on the CSIM20 simulator, which showed 22% improvement in a normal situation and approximately 77.83% improvement in heavy traffic in terms of the response time compared to that reported in the literature. We measure and compare the response time. The result show that the proposed scheme has shorter response time and maintains than other systems and supports services during the heavy traffic.

2341-2360hit(8214hit)