The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

721-740hit(8214hit)

  • Online-Efficient Interval Test via Secure Empty-Set Check

    Katsunari SHISHIDO  Atsuko MIYAJI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2020/05/14
      Vol:
    E103-D No:7
      Page(s):
    1598-1607

    In the age of information and communications technology (ICT), not only collecting data but also using such data is provided in various services. It is necessary to ensure data privacy in such services while providing efficient computation and communication complexity. In this paper, we propose the first interval test designed according to the notion of online and offline phases by executing our new empty-set check. Our protocol is proved to ensure both server and client privacy. Furthermore, neither the computational complexity of a client in the online phase nor the communicational complexity from a server to a client depends on the size of the set. As a result, even in a practical situation in which one server receives requests from numerous clients, the waiting time for a client to obtain the result of an interval test can be minimized.

  • Strategy for Improving Target Selection Accuracy in Indirect Touch Input

    Yizhong XIN  Ruonan LIU  Yan LI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:7
      Page(s):
    1703-1709

    Aiming at the problem of low accuracy of target selection in indirect touch input, an indirect multi-touch input device was designed and built. We explored here four indirect touch input techniques which were TarConstant, TarEnlarge, TarAttract, TarEnlargeAttract, and investigated their performance when subjects completing the target selection tasks through comparative experiments. Results showed that TarEnlargeAttract enabled the shortest movement time along with the lowest error rate, 2349.9ms and 10.9% respectively. In terms of learning effect, both TarAttract and TarEnlargeAttract had learning effect on movement time, which indicated that the speed of these two techniques can be improved with training. Finally, the strategy of improving the accuracy of indirect touch input was given, which has reference significance for the interface design of indirect touch input.

  • Stochastic Discrete First-Order Algorithm for Feature Subset Selection

    Kota KUDO  Yuichi TAKANO  Ryo NOMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/04/13
      Vol:
    E103-D No:7
      Page(s):
    1693-1702

    This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. [5] recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a stochastic discrete first-order (SDFO) algorithm for feature subset selection. In this algorithm, random perturbations are added to a sequence of candidate solutions as a means to escape from locally optimal solutions, which broadens the range of discoverable solutions. Moreover, we derive the optimal step size in the gradient-descent direction to accelerate convergence of the algorithm. We also make effective use of the L2-regularization term to improve the predictive performance of a resultant subset regression model. The simulation results demonstrate that our algorithm substantially outperforms the original DFO algorithm. Our algorithm was superior in predictive performance to lasso and forward stepwise selection as well.

  • Millimeter-Wave Radio Channel Characterization Using Multi-Dimensional Sub-Grid CLEAN Algorithm

    Minseok KIM  Tatsuki IWATA  Shigenobu SASAKI  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/01/10
      Vol:
    E103-B No:7
      Page(s):
    767-779

    In radio channel measurements and modeling, directional scanning via highly directive antennas is the most popular method to obtain angular channel characteristics to develop and evaluate advanced wireless systems for high frequency band use. However, it is often insufficient for ray-/cluster-level characterizations because the angular resolution of the measured data is limited by the angular sampling interval over a given scanning angle range and antenna half power beamwidth. This study proposes the sub-grid CLEAN algorithm, a novel technique for high-resolution multipath component (MPC) extraction from the multi-dimensional power image, so called double-directional angular delay power spectrum. This technique can successfully extract the MPCs by using the multi-dimensional power image. Simulation and measurements showed that the proposed technique could extract MPCs for ray-/cluster-level characterizations and channel modeling. Further, applying the proposed method to the data captured at 58.5GHz in an atrium entrance hall environment which is an indoor hotspot access scenario in the fifth generation mobile system, the multipath clusters and corresponding scattering processes were identified.

  • A Triple-Band CP Rectenna for Ambient RF Energy Harvesting

    Guiping JIN  Guangde ZENG  Long LI  Wei WANG  Yuehui CUI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/01/10
      Vol:
    E103-B No:7
      Page(s):
    759-766

    A triple-band CP rectenna for ambient RF energy harvesting is presented in this paper. A simple broadband CP slot antenna has been proposed with the bandwidth of 51.1% operating from 1.53 to 2.58GHz, which can cover GSM-1800, UMTS-2100 and 2.45GHz WLAN bands. Accordingly, a triple-band rectifying circuit is designed to convert RF energy in the above bands, with the maximum RF-DC conversion efficiency of 42.5% at a relatively low input power of -5dBm. Additionally, the rectenna achieves the maximum conversion efficiency of 12.7% in the laboratory measurements. The measured results show a good performance in the laboratory measurements.

  • Survivable Virtual Network Topology Protection Method Based on Particle Swarm Optimization

    Guangyuan LIU  Daokun CHEN  

     
    LETTER-Information Network

      Pubricized:
    2020/03/04
      Vol:
    E103-D No:6
      Page(s):
    1414-1418

    Survivable virtual network embedding (SVNE) is one of major challenges of network virtualization. In order to improve the utilization rate of the substrate network (SN) resources with virtual network (VN) topology connectivity guarantee under link failure in SN, we first establishes an Integer Linear Programming (ILP) model for that under SN supports path splitting. Then we designs a novel survivable VN topology protection method based on particle swarm optimization (VNE-PSO), which redefines the parameters and related operations of particles with the embedding overhead as the fitness function. Simulation results show that the solution significantly improves the long-term average revenue of the SN, the acceptance rate of VN requests, and reduces the embedding time compared with the existing research results.

  • Hand-Dorsa Vein Recognition Based on Selective Deep Convolutional Feature

    Zaiyu PAN  Jun WANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/03/04
      Vol:
    E103-D No:6
      Page(s):
    1423-1426

    A pre-trained deep convolutional neural network (DCNN) is adopted as a feature extractor to extract the feature representation of vein images for hand-dorsa vein recognition. In specific, a novel selective deep convolutional feature is proposed to obtain more representative and discriminative feature representation. Extensive experiments on the lab-made database obtain the state-of-the-art recognition result, which demonstrates the effectiveness of the proposed model.

  • Evaluation of Software Fault Prediction Models Considering Faultless Cases

    Yukasa MURAKAMI  Masateru TSUNODA  Koji TODA  

     
    PAPER

      Pubricized:
    2020/03/09
      Vol:
    E103-D No:6
      Page(s):
    1319-1327

    To enhance the prediction accuracy of the number of faults, many studies proposed various prediction models. The model is built using a dataset collected in past projects, and the number of faults is predicted using the model and the data of the current project. Datasets sometimes have many data points where the dependent variable, i.e., the number of faults is zero. When a multiple linear regression model is made using the dataset, the model may not be built properly. To avoid the problem, the Tobit model is considered to be effective when predicting software faults. The model assumes that the range of a dependent variable is limited and the model is built based on the assumption. Similar to the Tobit model, the Poisson regression model assumes there are many data points whose value is zero on the dependent variable. Also, log-transformation is sometimes applied to enhance the accuracy of the model. Additionally, ensemble methods are effective to enhance prediction accuracy of the models. We evaluated the prediction accuracy of the methods separately, when the number of faults is zero and not zero. In the experiment, our proposed ensemble method showed the highest accuracy, and Pred25 was 21% when the number of faults was not zero, and it was 45% when the number was zero.

  • Interactive Goal Model Construction Based on a Flow of Questions

    Hiroyuki NAKAGAWA  Hironori SHIMADA  Tatsuhiro TSUCHIYA  

     
    PAPER

      Pubricized:
    2020/03/06
      Vol:
    E103-D No:6
      Page(s):
    1309-1318

    Goal modeling is a method that describes requirements structurally. Goal modeling mainly consists of two tasks: extraction of goals and organization of the extracted goals. Generally, the process of the goal modeling requires intensive manual intervention and higher modeling skills than the process of the usual requirements description. In order to mitigate this problem, we propose a method that provides systematic supports for constructing goal models. In the method, the requirement analyst answers questions and a goal model is semi-automatically constructed based on the answers made. We develop a prototype tool that implements the proposed method and apply it to two systems. The results demonstrate the feasibility of the method.

  • The Influence of High-Temperature Sputtering on the N-Doped LaB6 Thin Film Formation Utilizing RF Sputtering

    Kyung Eun PARK  Shun-ichiro OHMI  

     
    PAPER-Electronic Materials

      Vol:
    E103-C No:6
      Page(s):
    293-298

    In this paper, the influence of high-temperature sputtering on the nitrogen-doped (N-doped) LaB6 thin film formation utilizing RF sputtering was investigated. The N-doped LaB6/SiO2/p-Si(100) MOS diode and N-doped LaB6/p-Si(100) of Schottky diode were fabricated. A 30 nm thick N-doped LaB6 thin film was deposited from room temperature (RT) to 150°C. It was found that the resistivity was decreased from 1.5 mΩcm to 0.8 mΩcm by increasing deposition temperature from RT to 150°C. The variation of work function was significantly decreased in case that N-doped LaB6 thin film deposited at 150°C. Furthermore, Schottky characteristic was observed by increasing deposition temperature to 150°C. In addition, the crystallinity of N-doped LaB6 thin film was improved by increasing deposition temperature.

  • Performance Prediction of Wireless Vital Data Collection System for Exercisers by a Network Simulator

    Takuma HAMAGAMI  Shinsuke HARA  Hiroyuki YOMO  Ryusuke MIYAMOTO  Yasutaka KAWAMOTO  Takunori SHIMAZAKI  Hiroyuki OKUHATA  

     
    PAPER

      Pubricized:
    2020/01/10
      Vol:
    E103-B No:6
      Page(s):
    653-661

    When we collect vital data from exercisers by putting wireless sensor nodes to them, the reliability of the wireless data collection is dependent on the position of node on the body of exerciser, therefore, in order to determine the suitable body position, it is essential to evaluate the data collection performances by changing the body positions of nodes in experiments involving human subjects. However, their fair comparison is problematic, because the experiments have no repeatability, that is, we cannot evaluate the performances for multiple body positions in an experiment at the same time. In this paper, we predict the performances by a software network simulator. Using two main functions such as a channel state function and a mobility function, the network simulator can repeatedly generate the same channel and mobility conditions for nodes. Numerical result obtained by the network simulator shows that when collecting vital data from twenty two footballers in a game, among three body position such as waist, forearm and calf, the forearm position gives the highest data collection rate and the predicted data collection rates agree well with the ones obtained by an experiment involving real subjects.

  • Multiple Human Tracking Using an Omnidirectional Camera with Local Rectification and World Coordinates Representation

    Hitoshi NISHIMURA  Naoya MAKIBUCHI  Kazuyuki TASAKA  Yasutomo KAWANISHI  Hiroshi MURASE  

     
    PAPER

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:6
      Page(s):
    1265-1275

    Multiple human tracking is widely used in various fields such as marketing and surveillance. The typical approach associates human detection results between consecutive frames using the features and bounding boxes (position+size) of detected humans. Some methods use an omnidirectional camera to cover a wider area, but ID switch often occurs in association with detections due to following two factors: i) The feature is adversely affected because the bounding box includes many background regions when a human is captured from an oblique angle. ii) The position and size change dramatically between consecutive frames because the distance metric is non-uniform in an omnidirectional image. In this paper, we propose a novel method that accurately tracks humans with an association metric for omnidirectional images. The proposed method has two key points: i) For feature extraction, we introduce local rectification, which reduces the effect of background regions in the bounding box. ii) For distance calculation, we describe the positions in a world coordinate system where the distance metric is uniform. In the experiments, we confirmed that the Multiple Object Tracking Accuracy (MOTA) improved 3.3 in the LargeRoom dataset and improved 2.3 in the SmallRoom dataset.

  • Efficient Hybrid DOA Estimation for Massive Uniform Rectangular Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:6
      Page(s):
    836-840

    In this letter, an efficient hybrid direction-of-arrival (DOA) estimation scheme is devised for massive uniform rectangular array. In this scheme, the DOA estimator based on a two-dimensional (2D) discrete Fourier transform is first applied to acquire coarse initial DOA estimates for single data snapshot. Then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. Meanwhile, a Nyström-based method is utilized to correctly compute the required noise-subspace projection matrix, avoiding the direct computation of full-dimensional sample correlation matrix and its eigenvalue decomposition. Therefore, the proposed scheme not only can estimate DOA, but also save computational cost, especially in massive antenna arrays scenarios. Simulation results are included to demonstrate the effectiveness of the proposed hybrid estimate scheme.

  • Sampling Set Selection for Bandlimited Signals over Perturbed Graph

    Pei LI  Haiyang ZHANG  Fan CHU  Wei WU  Juan ZHAO  Baoyun WANG  

     
    LETTER-Graphs and Networks

      Vol:
    E103-A No:6
      Page(s):
    845-849

    This paper proposes a sampling strategy for bandlimited graph signals over perturbed graph, in which we assume the edge between any pair of the nodes may be deleted randomly. Considering the mismatch between the true graph and the presumed graph, we derive the mean square error (MSE) of the reconstructed bandlimited graph signals. To minimize the MSE, we propose a greedy-based algorithm to obtain the optimal sampling set. Furthermore, we use Neumann series to avoid the pseudo-inverse computing. An efficient algorithm with low-complexity is thus proposed. Finally, numerical results show the superiority of our proposed algorithms over the other existing algorithms.

  • Non-Steady Trading Day Detection Based on Stock Index Time-Series Information

    Hideaki IWATA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E103-A No:6
      Page(s):
    821-828

    Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.

  • Deep State-Space Model for Noise Tolerant Skeleton-Based Action Recognition

    Kazuki KAWAMURA  Takashi MATSUBARA  Kuniaki UEHARA  

     
    PAPER

      Pubricized:
    2020/03/18
      Vol:
    E103-D No:6
      Page(s):
    1217-1225

    Action recognition using skeleton data (3D coordinates of human joints) is an attractive topic due to its robustness to the actor's appearance, camera's viewpoint, illumination, and other environmental conditions. However, skeleton data must be measured by a depth sensor or extracted from video data using an estimation algorithm, and doing so risks extraction errors and noise. In this work, for robust skeleton-based action recognition, we propose a deep state-space model (DSSM). The DSSM is a deep generative model of the underlying dynamics of an observable sequence. We applied the proposed DSSM to skeleton data, and the results demonstrate that it improves the classification performance of a baseline method. Moreover, we confirm that feature extraction with the proposed DSSM renders subsequent classifications robust to noise and missing values. In such experimental settings, the proposed DSSM outperforms a state-of-the-art method.

  • Heatmapping of Group People Involved in the Group Activity

    Kohei SENDO  Norimichi UKITA  

     
    PAPER

      Pubricized:
    2020/03/18
      Vol:
    E103-D No:6
      Page(s):
    1209-1216

    This paper proposes a method for heatmapping people who are involved in a group activity. Such people grouping is useful for understanding group activities. In prior work, people grouping is performed based on simple inflexible rules and schemes (e.g., based on proximity among people and with models representing only a constant number of people). In addition, several previous grouping methods require the results of action recognition for individual people, which may include erroneous results. On the other hand, our proposed heatmapping method can group any number of people who dynamically change their deployment. Our method can work independently of individual action recognition. A deep network for our proposed method consists of two input streams (i.e., RGB and human bounding-box images). This network outputs a heatmap representing pixelwise confidence values of the people grouping. Extensive exploration of appropriate parameters was conducted in order to optimize the input bounding-box images. As a result, we demonstrate the effectiveness of the proposed method for heatmapping people involved in group activities.

  • Dual-Task Integrated Network for Fast Pedestrian Detection in Crowded Scenes

    Chen CHEN  Huaxin XIAO  Yu LIU  Maojun ZHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/19
      Vol:
    E103-D No:6
      Page(s):
    1371-1379

    Pedestrian detection is a critical problem in computer vision with significant impact on many real-world applications. In this paper, we introduce an fast dual-task pedestrian detector with integrated segmentation context (DTISC) which predicts pedestrian location as well as its pixel-wise segmentation. The proposed network has three branches where two main branches can independently complete their tasks while useful representations from each task are shared between two branches via the integration branch. Each branch is based on fully convolutional network and is proven effective in its own task. We optimize the detection and segmentation branch on separate ground truths. With reasonable connections, the shared features introduce additional supervision and clues into each branch. Consequently, the two branches are infused at feature spaces increasing their robustness and comprehensiveness. Extensive experiments on pedestrian detection and segmentation benchmarks demonstrate that our joint model improves the performance of detection and segmentation against state-of-the-art algorithms.

  • Multicast UE Selection for Efficient D2D Content Delivery Based on Social Networks

    Yanli XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:5
      Page(s):
    802-805

    Device-to-device (D2D) content delivery reduces the energy consumption of frequent content retrieval in future content-centric cellular networks based on proximal content delivery. Compared with unicast, multicast may be more efficient since it serves the content requests of multiple users simultaneously. The serving efficiency mainly depends on the selection of multicast transmitter, which has not been well addressed. In this letter, we consider the match degree between the multicast content of transmitter and the required content of receiver based on social relationship between transceivers. By integrating the effects of communication environments and match degree into the selection procedure, a multicast UE selection scheme is proposed to improve the number of benefited receivers from D2D multicast. Simulation results show that the proposed scheme can efficiently improve the performance of D2D multicast content delivery under different communication environments.

  • CU-MAC: A MAC Protocol for Centralized UAV Networks with Directional Antennas Open Access

    Aijing LI  Guodong WU  Chao DONG  Lei ZHANG  

     
    PAPER-Network

      Pubricized:
    2019/11/06
      Vol:
    E103-B No:5
      Page(s):
    537-544

    Media Access Control (MAC) is critical to guarantee different Quality of Service (QoS) requirements for Unmanned Aerial Vehicle (UAV) networks, such as high reliability for safety packets and high throughput for service packets. Meanwhile, due to their ability to provide lower delay and higher data rates, more UAVs are using frequently directional antennas. However, it is challenging to support different QoS in UAV networks with directional antennas, because of the high mobility of UAV which causes serious channel resource loss. In this paper, we propose CU-MAC which is a MAC protocol for Centralized UAV networks with directional antennas. First, we design a mobility prediction based time-frame optimization scheme to provide reliable broadcast service for safety packets. Then, a traffic prediction based channel allocation scheme is proposed to guarantee the priority of video packets which are the most common service packets nowadays. Simulation results show that compared with other representative protocols, CU-MAC achieves higher reliability for safety packets and improves the throughput of service packets, especially video packets.

721-740hit(8214hit)