The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

821-840hit(8214hit)

  • Laser-Induced Controllable Instruction Replacement Fault Attack Open Access

    Junichi SAKAMOTO  Daisuke FUJIMOTO  Tsutomu MATSUMOTO  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    11-20

    To develop countermeasures against fault attacks, it is important to model an attacker's ability. The instruction skip model is a well-studied practical model for fault attacks on software. Contrastingly, few studies have investigated the instruction replacement model, which is a generalization of the instruction skip model, because replacing an instruction with a desired one is considered difficult. Some previous studies have reported successful instruction replacements; however, those studies concluded that such instruction replacements are not practical attacks because the outcomes of the replacements are uncontrollable. This paper proposes the concept of a controllable instruction replacement technique that uses the laser irradiation of flash memory. The feasibility of the proposed technique is demonstrated experimentally using a smartcard-type ARM SC100 microcontroller. Then, practical cryptosystem attacks that exploit the proposed technique are investigated. The targeted cryptosystems employ the AES with software-based anti-fault countermeasures. We demonstrate that an existing anti-instruction-skip countermeasure can be circumvented by replacing a critical instruction, e.g., a branch instruction to detect fault occurrence.

  • Real-Time Image Processing Based on Service Function Chaining Using CPU-FPGA Architecture

    Yuta UKON  Koji YAMAZAKI  Koyo NITTA  

     
    PAPER-Network System

      Pubricized:
    2019/08/05
      Vol:
    E103-B No:1
      Page(s):
    11-19

    Advanced information-processing services based on cloud computing are in great demand. However, users want to be able to customize cloud services for their own purposes. To provide image-processing services that can be optimized for the purpose of each user, we propose a technique for chaining image-processing functions in a CPU-field programmable gate array (FPGA) coupled server architecture. One of the most important requirements for combining multiple image-processing functions on a network, is low latency in server nodes. However, large delay occurs in the conventional CPU-FPGA architecture due to the overheads of packet reordering for ensuring the correctness of image processing and data transfer between the CPU and FPGA at the application level. This paper presents a CPU-FPGA server architecture with a real-time packet reordering circuit for low-latency image processing. In order to confirm the efficiency of our idea, we evaluated the latency of histogram of oriented gradients (HOG) feature calculation as an offloaded image-processing function. The results show that the latency is about 26 times lower than that of the conventional CPU-FPGA architecture. Moreover, the throughput decreased by less than 3.7% under the worst-case condition where 90 percent of the packets are randomly swapped at a 40-Gbps input rate. Finally, we demonstrated that a real-time video monitoring service can be provided by combining image processing functions using our architecture.

  • A Log-Based Testing Approach for Detecting Faults Caused by Incorrect Assumptions About the Environment

    Sooyong JEONG  Ajay Kumar JHA  Youngsul SHIN  Woo Jin LEE  

     
    LETTER-Software Engineering

      Pubricized:
    2019/10/04
      Vol:
    E103-D No:1
      Page(s):
    170-173

    Embedded software developers assume the behavior of the environment when specifications are not available. However, developers may assume the behavior incorrectly, which may result in critical faults in the system. Therefore, it is important to detect the faults caused by incorrect assumptions. In this letter, we propose a log-based testing approach to detect the faults. First, we create a UML behavioral model to represent the assumed behavior of the environment, which is then transformed into a state model. Next, we extract the actual behavior of the environment from a log, which is then incorporated in the state model, resulting in a state model that represents both assumed and actual behaviors. Existing testing techniques based on the state model can be used to generate test cases from our state model to detect faults.

  • Genetic Node-Mapping Methods for Rapid Collective Communications

    Takashi YOKOTA  Kanemitsu OOTSU  Takeshi OHKAWA  

     
    PAPER-Computer System

      Pubricized:
    2019/10/10
      Vol:
    E103-D No:1
      Page(s):
    111-129

    Inter-node communication is essential in parallel computation. The performance of parallel processing depends on the efficiencies in both computation and communication, thus, the communication cost is not negligible. A parallel application program involves a logical communication structure that is determined by the interchange of data between computation nodes. Sometimes the logical communication structure mismatches to that in a real parallel machine. This mismatch results in large communication costs. This paper addresses the node-mapping problem that rearranges logical position of node so that the degree of mismatch is decreased. This paper assumes that parallel programs execute one or more collective communications that follow specific traffic patterns. An appropriate node-mapping achieves high communication performance. This paper proposes a strong heuristic method for solving the node-mapping problem and adapts the method to a genetic algorithm. Evaluation results reveal that the proposed method achieves considerably high performance; it achieves 8.9 (4.9) times speed-up on average in single-(two-)traffic-pattern cases in 32×32 torus networks. Specifically, for some traffic patterns in small-scale networks, the proposed method finds theoretically optimized solutions. Furthermore, this paper discusses in deep about various issues in the proposed method that employs genetic algorithm, such as population of genes, number of generations, and traffic patterns. This paper also discusses applicability to large-scale systems for future practical use.

  • Free Space Optical Turbo Coded Communication System with Hybrid PPM-OOK Signaling

    Ran SUN  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    287-294

    For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.

  • Computationally Efficient DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:1
      Page(s):
    361-365

    This letter presents an improved hybrid direction of arrival (DOA) estimation scheme with computational efficiency for massive uniform linear array. In order to enhance the resolution of DOA estimation, the initial estimator based on the discrete Fourier transform is applied to obtain coarse DOA estimates by a virtual array extension for one snapshot. Then, by means of a first-order Taylor series approximation to the direction vector with the one initially estimated in a very small region, the iterative fine estimator can find a new direction vector which raises the searching efficiency. Simulation results are provided to demonstrate the effectiveness of the proposed scheme.

  • Secure Overcomplete Dictionary Learning for Sparse Representation

    Takayuki NAKACHI  Yukihiro BANDOH  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2019/10/09
      Vol:
    E103-D No:1
      Page(s):
    50-58

    In this paper, we propose secure dictionary learning based on a random unitary transform for sparse representation. Currently, edge cloud computing is spreading to many application fields including services that use sparse coding. This situation raises many new privacy concerns. Edge cloud computing poses several serious issues for end users, such as unauthorized use and leak of data, and privacy failures. The proposed scheme provides practical MOD and K-SVD dictionary learning algorithms that allow computation on encrypted signals. We prove, theoretically, that the proposal has exactly the same dictionary learning estimation performance as the non-encrypted variant of MOD and K-SVD algorithms. We apply it to secure image modeling based on an image patch model. Finally, we demonstrate its performance on synthetic data and a secure image modeling application for natural images.

  • Blind Bandwidth Extension with a Non-Linear Function and Its Evaluation on Automatic Speaker Verification

    Ryota KAMINISHI  Haruna MIYAMOTO  Sayaka SHIOTA  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2019/10/25
      Vol:
    E103-D No:1
      Page(s):
    42-49

    This study evaluates the effects of some non-learning blind bandwidth extension (BWE) methods on state-of-the-art automatic speaker verification (ASV) systems. Recently, a non-linear bandwidth extension (N-BWE) method has been proposed as a blind, non-learning, and light-weight BWE approach. Other non-learning BWEs have also been developed in recent years. For ASV evaluations, most data available to train ASV systems is narrowband (NB) telephone speech. Meanwhile, wideband (WB) data have been used to train the state-of-the-art ASV systems, such as i-vector, d-vector, and x-vector. This can cause sampling rate mismatches when all datasets are used. In this paper, we investigate the influence of sampling rate mismatches in the x-vector-based ASV systems and how non-learning BWE methods perform against them. The results showed that the N-BWE method improved the equal error rate (EER) on ASV systems based on the x-vector when the mismatches were present. We researched the relationship between objective measurements and EERs. Consequently, the N-BWE method produced the lowest EERs on both ASV systems and obtained the lower RMS-LSD value and the higher STOI score.

  • An Open Multi-Sensor Fusion Toolbox for Autonomous Vehicles

    Abraham MONRROY CANO  Eijiro TAKEUCHI  Shinpei KATO  Masato EDAHIRO  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    252-264

    We present an accurate and easy-to-use multi-sensor fusion toolbox for autonomous vehicles. It includes a ‘target-less’ multi-LiDAR (Light Detection and Ranging), and Camera-LiDAR calibration, sensor fusion, and a fast and accurate point cloud ground classifier. Our calibration methods do not require complex setup procedures, and once the sensors are calibrated, our framework eases the fusion of multiple point clouds, and cameras. In addition we present an original real-time ground-obstacle classifier, which runs on the CPU, and is designed to be used with any type and number of LiDARs. Evaluation results on the KITTI dataset confirm that our calibration method has comparable accuracy with other state-of-the-art contenders in the benchmark.

  • Low-Complexity Time-Invariant Angle-Range Dependent DM Based on Time-Modulated FDA Using Vector Synthesis Method

    Qian CHENG  Jiang ZHU  Tao XIE  Junshan LUO  Zuohong XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    79-90

    A low-complexity time-invariant angle-range dependent directional modulation (DM) based on time-modulated frequency diverse array (TM-FDA-DM) is proposed to achieve point-to-point physical layer security communications. The principle of TM-FDA is elaborated and the vector synthesis method is utilized to realize the proposal, TM-FDA-DM, where normalization and orthogonal matrices are designed to modulate the useful baseband symbols and inserted artificial noise, respectively. Since the two designed matrices are time-invariant fixed values, which avoid real-time calculation, the proposed TM-FDA-DM is much easier to implement than time-invariant DMs based on conventional linear FDA or logarithmical FDA, and it also outperforms the time-invariant angle-range dependent DM that utilizes genetic algorithm (GA) to optimize phase shifters on radio frequency (RF) frontend. Additionally, a robust synthesis method for TM-FDA-DM with imperfect angle and range estimations is proposed by optimizing normalization matrix. Simulations demonstrate that the proposed TM-FDA-DM exhibits time-invariant and angle-range dependent characteristics, and the proposed robust TM-FDA-DM can achieve better BER performance than the non-robust method when the maximum range error is larger than 7km and the maximum angle error is larger than 4°.

  • Rhythm Tap Technique for Cross-Device Interaction Enabling Uniform Operation for Various Devices Open Access

    Hirohito SHIBATA  Junko ICHINO  Shun'ichi TANO  Tomonori HASHIYAMA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2515-2523

    This paper proposes a novel interaction technique to transfer data across various types of digital devices in uniform a manner and to allow specifying what kind of data should be sent. In our framework, when users tap multiple devices rhythmically, data corresponding to the rhythm (transfer type) are transferred from a device tapped in the first tap (source device) to the other (target device). It is easy to operate, applicable to a wide range of devices, and extensible in a sense that we can adopt new transfer types by adding new rhythms. Through a subjective evaluation and a simulation, we had a prospect that our approach would be feasible. We also discuss suggestions and limitation to implement the technique.

  • Joint Optimization of Delay Guarantees and Resource Allocation for Service Function Chaining

    Yunjie GU  Yuehang DING  Yuxiang HU  

     
    LETTER-Information Network

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2611-2614

    A Service Function Chain (SFC) is an ordered sequence of virtual network functions (VNFs) to provide network service. Most existing SFC orchestration schemes, however, cannot optimize the resources allocation while guaranteeing the service delay constraint. To fulfill this goal, we propose a Layered Graph based SFC Orchestration Scheme (LGOS). LGOS converts both the cost of resource and the related delay into the link weights in the layered graph, which helps abstract the SFC orchestration problem as a shortest path problem. Then a simulated annealing based batch processing algorithm is designed for SFC requests set. Through extensive evaluations, we demonstrated that our scheme can reduce the end-to-end delay and the operational expenditure by 21.6% and 13.7% at least, and the acceptance ratio of requests set can be improved by 22.3%, compared with other algorithms.

  • An Evolutionary Approach Based on Symmetric Nonnegative Matrix Factorization for Community Detection in Dynamic Networks

    Yu PAN  Guyu HU  Zhisong PAN  Shuaihui WANG  Dongsheng SHAO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2619-2623

    Detecting community structures and analyzing temporal evolution in dynamic networks are challenging tasks to explore the inherent characteristics of the complex networks. In this paper, we propose a semi-supervised evolutionary clustering model based on symmetric nonnegative matrix factorization to detect communities in dynamic networks, named sEC-SNMF. We use the results of community partition at the previous time step as the priori information to modify the current network topology, then smooth-out the evolution of the communities and reduce the impact of noise. Furthermore, we introduce a community transition probability matrix to track and analyze the temporal evolutions. Different from previous algorithms, our approach does not need to know the number of communities in advance and can deal with the situation in which the number of communities and nodes varies over time. Extensive experiments on synthetic datasets demonstrate that the proposed method is competitive and has a superior performance.

  • A Study on the Current Status of Functional Idioms in Java

    Hiroto TANAKA  Shinsuke MATSUMOTO  Shinji KUSUMOTO  

     
    PAPER

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2414-2422

    Over the past recent decades, numerous programming languages have expanded to embrace multi-paradigms such as the fusion of object-oriented and functional programming. For example, Java, one of the most famous object-oriented programming languages, introduced a number of functional idioms in 2014. This evolution enables developers to achieve various benefits from both paradigms. However, we do not know how Java developers use functional idioms actually. Additionally, the extent to which, while there are several criticisms against the idioms, the developers actually accept and/or use the idioms currently remains unclear. In this paper, we investigate the actual use status of three functional idioms (Lambda Expression, Stream, and Optional) in Java projects by mining 100 projects containing approximately 130,000 revisions. From the mining results, we determined that Lambda Expression is utilized in 16% of all the examined projects, whereas Stream and Optional are only utilized in 2% to 3% of those projects. It appears that most Java developers avoid using functional idioms just because of keeping compatibility Java versions, while a number of developers accept these idioms for reasons of readability and runtime performance improvements. Besides, when they adopt the idioms, Lambda Expression frequently consists of a single statement, and Stream is used to operate the elements of a collection. On the other hand, some developers implement Optional using deprecated methods. We can say that good usage of the idioms should be widely known among developers.

  • Enhancing Physical Layer Security Performance in Downlink Cellular Networks through Cooperative Users

    Shijie WANG  Yuanyuan GAO  Xiaochen LIU  Guangna ZHANG  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:12
      Page(s):
    2008-2014

    In this paper, we explore how to enhance the physical layer security performance in downlink cellular networks through cooperative jamming technology. Idle user equipments (UE) are used to cooperatively transmit jamming signal to confuse eavesdroppers (Eve). We propose a threshold-based jammer selection scheme to decide which idle UE should participate in the transmission of jamming signal. Threshold conditions are carefully designed to decrease interference to legitimate channel, while maintain the interference to the Eves. Moreover, fewer UE are activated, which is helpful for saving energy consumptions of cooperative UEs. Analytical expressions of the connection and secrecy performances are derived, which are validated through Monte Carlo simulations. Theoretical and simulation results reveal that our proposed scheme can improve connection performance, while approaches the secrecy performance of [12]. Furthermore, only 43% idle UEs of [12] are used for cooperative jamming, which helps to decrease energy consumption of network.

  • Reconfigurable 3D Sound Processor and Its Automatic Design Environment Using High-Level Synthesis

    Saya OHIRA  Naoki TSUCHIYA  Tetsuya MATSUMURA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1804-1812

    We propose a three-dimensional (3D) sound processor architecture that includes super-directional modulation intellectual property (IP) and 3D sound processing IP and for consumer applications. In addition, we also propose an automatic design environment for 3D sound processing IP. This processor can generate realistic small sound fields in arbitrary spaces using ultrasound. In particular, in the 3D sound processing IP, in order to reproduce 3D audio, it is necessary to reproduce the personal frequency characteristics of complex head related transfer functions. For this reason, we have constructed an automatic design environment with high reconfigurability. This automatic design environment is based on high-level synthesis, and it is possible to automatically generate a C-based algorithm simulator and automatically synthesize the IP hardware by inputting a parameter description file for filter design. This automatic design environment can reduce the design period to approximately 1/5 as compared with conventional manual design. Applying the automatic design environment, a 3D sound processing IP was designed experimentally. The designed IP can be sufficiently applied to consumer applications from the viewpoints of hardware amount and power consumption.

  • Constructing Two Completely Independent Spanning Trees in Balanced Hypercubes

    Yi-Xian YANG  Kung-Jui PAI  Ruay-Shiung CHANG  Jou-Ming CHANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/06/17
      Vol:
    E102-D No:12
      Page(s):
    2409-2412

    A set of spanning trees of a graphs G are called completely independent spanning trees (CISTs for short) if for every pair of vertices x, y∈V(G), the paths joining x and y in any two trees have neither vertex nor edge in common, except x and y. Constructing CISTs has applications on interconnection networks such as fault-tolerant routing and secure message transmission. In this paper, we investigate the problem of constructing two CISTs in the balanced hypercube BHn, which is a hypercube-variant network and is superior to hypercube due to having a smaller diameter. As a result, the diameter of CISTs we constructed equals to 9 for BH2 and 6n-2 for BHn when n≥3.

  • Tweet Stance Detection Using Multi-Kernel Convolution and Attentive LSTM Variants

    Umme Aymun SIDDIQUA  Abu Nowshed CHY  Masaki AONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2493-2503

    Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.

  • Mathematical Analysis of Secrecy Amplification in Key Infection: The Whispering Mode

    Dae HYUN YUM  

     
    LETTER-Information Network

      Pubricized:
    2019/09/12
      Vol:
    E102-D No:12
      Page(s):
    2599-2602

    A wireless sensor network consists of spatially distributed devices using sensors to monitor physical and environmental conditions. Key infection is a key distribution protocol for wireless sensor networks with a partially present adversary; a sensor node wishing to communicate secretly with other nodes simply sends a symmetric encryption key in the clear. The partially present adversary can eavesdrop on only a small fraction of the keys. Secrecy amplification is a post-deployment strategy to improve the security of key infection by combining multiple keys propagated along different paths. The previous mathematical analysis of secrecy amplification assumes that sensor nodes always transmit packets at the maximum strength. We provide a mathematical analysis of secrecy amplification where nodes adjust their transmission power adaptively (a.k.a. whispering mode).

  • A Hue-Preserving Tone Mapping Scheme Based on Constant-Hue Plane Without Gamut Problem

    Yuma KINOSHITA  Kouki SEO  Artit VISAVAKITCHAROEN  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1865-1871

    We propose a novel hue-preserving tone mapping scheme. Various tone mapping operations have been studied so far, but there are very few works on color distortion caused in image tone mapping. First, LDR images produced from HDR ones by using conventional tone mapping operators (TMOs) are pointed out to have some distortion in hue values due to clipping and rounding quantization processing. Next,we propose a novel method which allows LDR images to have the same maximally saturated color values as those of HDR ones. Generated LDR images by the proposed method have smaller hue degradation than LDR ones generated by conventional TMOs. Moreover, the proposed method is applicable to any TMOs. In an experiment, the proposed method is demonstrated not only to produce images with small hue degradation but also to maintain well-mapped luminance, in terms of three objective metrics: TMQI, hue value in CIEDE2000, and the maximally saturated color on the constant-hue plane in the RGB color space.

821-840hit(8214hit)