The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

841-860hit(8214hit)

  • On the Distribution of p-Error Linear Complexity of p-Ary Sequences with Period pn

    Miao TANG  Juxiang WANG  Minjia SHI  Jing LIANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2595-2598

    Linear complexity and the k-error linear complexity of periodic sequences are the important security indices of stream cipher systems. This paper focuses on the distribution of p-error linear complexity of p-ary sequences with period pn. For p-ary sequences of period pn with linear complexity pn-p+1, n≥1, we present all possible values of the p-error linear complexity, and derive the exact formulas to count the number of the sequences with any given p-error linear complexity.

  • A Low Area Overhead Design Method for High-Performance General-Synchronous Circuits with Speculative Execution

    Shimpei SATO  Eijiro SASSA  Yuta UKON  Atsushi TAKAHASHI  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1760-1769

    In order to obtain high-performance circuits in advanced technology nodes, design methodology has to take the existence of large delay variations into account. Clock scheduling and speculative execution have overheads to realize them, but have potential to improve the performance by averaging the imbalance of maximum delay among paths and by utilizing valid data available earlier than worst-case scenarios, respectively. In this paper, we propose a high-performance digital circuit design method with speculative executions with less overhead by utilizing clock scheduling with delay insertions effectively. The necessity of speculations that cause overheads is effectively reduced by clock scheduling with delay insertion. Experiments show that a generated circuit achieves 26% performance improvement with 1.3% area overhead compared to a circuit without clock scheduling and without speculative execution.

  • Enhancing Physical Layer Security Performance in Downlink Cellular Networks through Cooperative Users

    Shijie WANG  Yuanyuan GAO  Xiaochen LIU  Guangna ZHANG  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:12
      Page(s):
    2008-2014

    In this paper, we explore how to enhance the physical layer security performance in downlink cellular networks through cooperative jamming technology. Idle user equipments (UE) are used to cooperatively transmit jamming signal to confuse eavesdroppers (Eve). We propose a threshold-based jammer selection scheme to decide which idle UE should participate in the transmission of jamming signal. Threshold conditions are carefully designed to decrease interference to legitimate channel, while maintain the interference to the Eves. Moreover, fewer UE are activated, which is helpful for saving energy consumptions of cooperative UEs. Analytical expressions of the connection and secrecy performances are derived, which are validated through Monte Carlo simulations. Theoretical and simulation results reveal that our proposed scheme can improve connection performance, while approaches the secrecy performance of [12]. Furthermore, only 43% idle UEs of [12] are used for cooperative jamming, which helps to decrease energy consumption of network.

  • Hue Signature Auto Update System for Visual Similarity-Based Phishing Detection with Tolerance to Zero-Day Attack

    Shuichiro HARUTA  Hiromu ASAHINA  Fumitaka YAMAZAKI  Iwao SASASE  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/09/04
      Vol:
    E102-D No:12
      Page(s):
    2461-2471

    Detecting phishing websites is imperative. Among several detection schemes, the promising ones are the visual similarity-based approaches. In those, targeted legitimate website's visual features referred to as signatures are stored in SDB (Signature Database) by the system administrator. They can only detect phishing websites whose signatures are highly similar to SDB's one. Thus, the system administrator has to register multiple signatures to detect various phishing websites and that cost is very high. This incurs the vulnerability of zero-day phishing attack. In order to address this issue, an auto signature update mechanism is needed. The naive way of auto updating SDB is expanding the scope of detection by adding detected phishing website's signature to SDB. However, the previous approaches are not suitable for auto updating since their similarity can be highly different among targeted legitimate website and subspecies of phishing website targeting that legitimate website. Furthermore, the previous signatures can be easily manipulated by attackers. In order to overcome the problems mentioned above, in this paper, we propose a hue signature auto update system for visual similarity-based phishing detection with tolerance to zero-day attack. The phishing websites targeting certain legitimate website tend to use the targeted website's theme color to deceive users. In other words, the users can easily distinguish phishing website if it has highly different hue information from targeted legitimate one (e.g. red colored Facebook is suspicious). Thus, the hue signature has a common feature among the targeted legitimate website and subspecies of phishing websites, and it is difficult for attackers to change it. Based on this notion, we argue that the hue signature fulfills the requirements about auto updating SDB and robustness for attackers' manipulating. This commonness can effectively expand the scope of detection when auto updating is applied to the hue signature. By the computer simulation with a real dataset, we demonstrate that our system achieves high detection performance compared with the previous scheme.

  • Mathematical Analysis of Secrecy Amplification in Key Infection: The Whispering Mode

    Dae HYUN YUM  

     
    LETTER-Information Network

      Pubricized:
    2019/09/12
      Vol:
    E102-D No:12
      Page(s):
    2599-2602

    A wireless sensor network consists of spatially distributed devices using sensors to monitor physical and environmental conditions. Key infection is a key distribution protocol for wireless sensor networks with a partially present adversary; a sensor node wishing to communicate secretly with other nodes simply sends a symmetric encryption key in the clear. The partially present adversary can eavesdrop on only a small fraction of the keys. Secrecy amplification is a post-deployment strategy to improve the security of key infection by combining multiple keys propagated along different paths. The previous mathematical analysis of secrecy amplification assumes that sensor nodes always transmit packets at the maximum strength. We provide a mathematical analysis of secrecy amplification where nodes adjust their transmission power adaptively (a.k.a. whispering mode).

  • An FPGA-Based Change-Point Detection for 10Gbps Packet Stream Open Access

    Takuma IWATA  Kohei NAKAMURA  Yuta TOKUSASHI  Hiroki MATSUTANI  

     
    PAPER-Computer System

      Pubricized:
    2019/07/23
      Vol:
    E102-D No:12
      Page(s):
    2366-2376

    In statistical analysis and data mining, change-point detection that identifies the change-points which are times when the probability distribution of time series changes has been used for various purposes, such as anomaly detections on network traffic and transaction data. However, computation cost of a conventional AR (Auto-Regression) model based approach is too high and infeasible for online. In this paper, an AR model based online change-point detection algorithm, called ChangeFinder, is implemented on an FPGA (Field Programmable Gate Array) based NIC (Network Interface Card). The proposed system computes the change-point score from time series data received from 10GbE (10Gbit Ethernet). More specifically, it computes the change-point score at the 10GbE NIC in advance of host applications. It can find change-points on single or multiple streams using a context memory. This paper aims to reduce the host workload and improve change-point detection performance by offloading ChangeFinder algorithm from host to the NIC. As evaluations, change-point detection in the FPGA NIC is compared with a baseline software implementation and those enhanced by two network optimization techniques using DPDK and Netfilter in terms of throughput. The result demonstrates 16.8x improvement in change-point detection throughput compared to the baseline software implementation. It is corresponding to the 10GbE line rate. Performance and area overheads when supporting multiple streams are also evaluated.

  • Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System Open Access

    Jin MITSUGI  Yuki SATO  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1834-1841

    Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.

  • 3D Global and Multi-View Local Features Combination Based Qualitative Action Recognition for Volleyball Game Analysis

    Xina CHENG  Yang LIU  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1891-1899

    Volleyball video analysis plays important roles in providing data for TV contents and developing strategies. Among all the topics of volleyball analysis, qualitative player action recognition is essential because it potentially provides not only the action that being performed but also the quality, which means how well the action is performed. However, most action recognition researches focus on the discrimination between different actions. The quality of an action, which is helpful for evaluation and training of the player skill, has only received little attention so far. The vital problems in qualitative action recognition include occlusion, small inter-class difference and various kinds of appearance caused by the player change. This paper proposes a 3D global and multi-view local features combination based recognition framework with global team formation feature, ball state feature and abrupt pose features. The above problems are solved by the combination of 3D global features (which hide the unstable and incomplete 2D motion feature caused by occlusion) and the multi-view local features (which get detailed local motion features of body parts in multiple viewpoints). Firstly, the team formation extracts the 3D trajectories from the whole team members rather than a single target player. This proposal focuses more on the entire feature while eliminating the personal effect. Secondly, the ball motion state feature extracts features from the 3D ball trajectory. The ball motion is not affected by the personal appearance, so this proposal ignores the influence of the players appearance and makes it more robust to target player change. At last, the abrupt pose feature consists of two parts: the abrupt hit frame pose (which extracts the contour shape of the player's pose at the hit time) and abrupt pose variation (which extracts the pose variation between the preparation pose and ending pose during the action). These two features make difference of each action quality more distinguishable by focusing on the motion standard and stability between different quality actions. Experiments are conducted on game videos from the Semifinal and Final Game of 2014 Japan Inter High School Games of Men's Volleyball in Tokyo Metropolitan Gymnasium. The experimental results show the accuracy achieves 97.26%, improving 11.33% for action discrimination and 91.76%, and improving 13.72% for action quality evaluation.

  • A Deep Neural Network for Real-Time Driver Drowsiness Detection

    Toan H. VU  An DANG  Jia-Ching WANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2637-2641

    We develop a deep neural network (DNN) for detecting driver drowsiness in videos. The proposed DNN model that receives driver's faces extracted from video frames as inputs consists of three components - a convolutional neural network (CNN), a convolutional control gate-based recurrent neural network (ConvCGRNN), and a voting layer. The CNN is to learn facial representations from global faces which are then fed to the ConvCGRNN to learn their temporal dependencies. The voting layer works like an ensemble of many sub-classifiers to predict drowsiness state. Experimental results on the NTHU-DDD dataset show that our model not only achieve a competitive accuracy of 84.81% without any post-processing but it can work in real-time with a high speed of about 100 fps.

  • A Fast Fabric Defect Detection Framework for Multi-Layer Convolutional Neural Network Based on Histogram Back-Projection

    Guodong SUN  Zhen ZHOU  Yuan GAO  Yun XU  Liang XU  Song LIN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2504-2514

    In this paper we design a fast fabric defect detection framework (Fast-DDF) based on gray histogram back-projection, which adopts end to end multi-convoluted network model to realize defect classification. First, the back-projection image is established through the gray histogram on fabric image, and the closing operation and adaptive threshold segmentation method are performed to screen the impurity information and extract the defect regions. Then, the defect images segmented by the Fast-DDF are marked and normalized into the multi-layer convolutional neural network for training. Finally, in order to solve the problem of difficult adjustment of network model parameters and long training time, some strategies such as batch normalization of samples and network fine tuning are proposed. The experimental results on the TILDA database show that our method can deal with various defect types of textile fabrics. The average detection accuracy with a higher rate of 96.12% in the database of five different defects, and the single image detection speed only needs 0.72s.

  • Joint Optimization of Delay Guarantees and Resource Allocation for Service Function Chaining

    Yunjie GU  Yuehang DING  Yuxiang HU  

     
    LETTER-Information Network

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2611-2614

    A Service Function Chain (SFC) is an ordered sequence of virtual network functions (VNFs) to provide network service. Most existing SFC orchestration schemes, however, cannot optimize the resources allocation while guaranteeing the service delay constraint. To fulfill this goal, we propose a Layered Graph based SFC Orchestration Scheme (LGOS). LGOS converts both the cost of resource and the related delay into the link weights in the layered graph, which helps abstract the SFC orchestration problem as a shortest path problem. Then a simulated annealing based batch processing algorithm is designed for SFC requests set. Through extensive evaluations, we demonstrated that our scheme can reduce the end-to-end delay and the operational expenditure by 21.6% and 13.7% at least, and the acceptance ratio of requests set can be improved by 22.3%, compared with other algorithms.

  • Transferring Adaptive Bit Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD Open Access

    Pierre LEBRETON  Kazuhisa YAMAGISHI  

     
    PAPER-Network

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2226-2242

    In this paper the quality of adaptive bit rate video streaming is investigated and two state-of-the-art models, i.e., the NTT audiovisual quality-estimation and ITU-T P.1203 models, are considered. This paper shows how these models can be applied to new conditions, e.g., 4K ultra high definition (4K-UHD) videos encoded using H.265, considering that they were originally designed and trained for HD videos encoded with H.264. Six subjective evaluations involving up to 192 participants and a large variety of test conditions, e.g., durations from 10sec to 3min, coding-quality variation, and stalling events, were conducted on both TV and mobile devices. Using the subjective data, this paper addresses how models and coefficients can be transferred to new conditions. A comparison between state-of-the-art models is conducted, showing the performance of transferred and retrained models. It is found that other video-quality estimation models, such as VMAF, can be used as input of the NTT and ITU-T P.1203 long-term pooling modules, allowing these other video-quality-estimation models to support the specificities of adaptive bit-rate-streaming scenarios. Finally, all retrained coefficients are detailed in this paper allowing future work to directly reuse the results of this study.

  • 16-QAM Sequences with Good Periodic Autocorrelation Function

    Fanxin ZENG  Yue ZENG  Lisheng ZHANG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Linjie QIAN  Li YAN  

     
    LETTER-Sequences

      Vol:
    E102-A No:12
      Page(s):
    1697-1700

    Sequences that attain the smallest possible absolute sidelobes (SPASs) of periodic autocorrelation function (PACF) play fairly important roles in synchronization of communication systems, Large scale integrated circuit testing, and so on. This letter presents an approach to construct 16-QAM sequences of even periods, based on the known quaternary sequences. A relationship between the PACFs of 16-QAM and quaternary sequences is established, by which when quaternary sequences that attain the SPASs of PACF are employed, the proposed 16-QAM sequences have good PACF.

  • An Evolutionary Approach Based on Symmetric Nonnegative Matrix Factorization for Community Detection in Dynamic Networks

    Yu PAN  Guyu HU  Zhisong PAN  Shuaihui WANG  Dongsheng SHAO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2619-2623

    Detecting community structures and analyzing temporal evolution in dynamic networks are challenging tasks to explore the inherent characteristics of the complex networks. In this paper, we propose a semi-supervised evolutionary clustering model based on symmetric nonnegative matrix factorization to detect communities in dynamic networks, named sEC-SNMF. We use the results of community partition at the previous time step as the priori information to modify the current network topology, then smooth-out the evolution of the communities and reduce the impact of noise. Furthermore, we introduce a community transition probability matrix to track and analyze the temporal evolutions. Different from previous algorithms, our approach does not need to know the number of communities in advance and can deal with the situation in which the number of communities and nodes varies over time. Extensive experiments on synthetic datasets demonstrate that the proposed method is competitive and has a superior performance.

  • Matrix Completion ESPRIT for DOA Estimation Using Nonuniform Linear Array Open Access

    Hongbing LI  Qunfei ZHANG  Weike FENG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2253-2259

    A novel matrix completion ESPRIT (MC-ESPRIT) algorithm is proposed to estimate the direction of arrival (DOA) with nonuniform linear arrays (NLA). By exploiting the matrix completion theory and the characters of Hankel matrix, the received data matrix of an NLA is tranformed into a two-fold Hankel matrix, which is a treatable for matrix completion. Then the decision variable can be reconstructed by the inexact augmented Lagrange multiplier method. This approach yields a completed data matrix, which is the same as the data matrix of uniform linear array (ULA). Thus the ESPRIT-type algorithm can be used to estimate the DOA. The MC-ESPRIT could resolve more signals than the MUSIC-type algorithms with NLA. Furthermore, the proposed algorithm does not need to divide the field of view of the array compared to the existing virtual interpolated array ESPRIT (VIA-ESPRIT). Simulation results confirm the effectiveness of MC-ESPRIT.

  • Tweet Stance Detection Using Multi-Kernel Convolution and Attentive LSTM Variants

    Umme Aymun SIDDIQUA  Abu Nowshed CHY  Masaki AONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2493-2503

    Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.

  • Packet-Oriented Erasure Correcting Codes by Bit-Level Shift Operation and Exclusive OR

    Yuta HANAKI  Takayuki NOZAKI  

     
    PAPER-Erasure Correction

      Vol:
    E102-A No:12
      Page(s):
    1622-1630

    This paper constructs packet-oriented erasure correcting codes and their systematic forms for the distributed storage systems. The proposed codes are encoded by exclusive OR and bit-level shift operation. By the shift operation, the encoded packets are slightly longer than the source packets. This paper evaluates the extra length of the encoded packets, called overhead, and shows that the proposed codes have smaller overheads than the zigzag decodable codes, which are existing codes using bit-level shift operation and exclusive OR.

  • Security Performance Analysis of Joint Multi-Relay and Jammer Selection for Physical-Layer Security under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:12
      Page(s):
    2015-2020

    In this paper, we investigate a novel joint multi-relay and jammer selection (JMRJS) scheme in order to improve the physical layer security of wireless networks. In the JMRJS scheme, all the relays succeeding in source decoding are selected to assist in the source signal transmission and meanwhile, all the remaining relay nodes are employed to act as friendly jammers to disturb the eavesdroppers by broadcasting artificial noise. Based on the more general Nakagami-m fading channel, we analyze the security performance of the JMRJS scheme for protecting the source signal against eavesdropping. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the JMRJS scheme over Nakagami-m fading channel are derived. Moreover, we analyze the security-reliability tradeoff (SRT) of this scheme. Simulation results show that as the number of decode-and-forward (DF)relay nodes increases, the SRT of the JMRJS scheme improves notably. And when the transmit power is below a certain value, the SRT of the JMRJS scheme consistently outperforms the joint single-relay and jammer selection (JSRJS) scheme and joint equal-relay and jammer selection (JERJS) scheme respectively. In addition, the SRT of this scheme is always better than that of the multi-relay selection (MRS) scheme.

  • Parameter Estimation of Fractional Bandlimited LFM Signals Based on Orthogonal Matching Pursuit Open Access

    Xiaomin LI  Huali WANG  Zhangkai LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1448-1456

    Parameter estimation theorems for LFM signals have been developed due to the advantages of fractional Fourier transform (FrFT). The traditional estimation methods in the fractional Fourier domain (FrFD) are almost based on two-dimensional search which have the contradiction between estimation performance and complexity. In order to solve this problem, we introduce the orthogonal matching pursuit (OMP) into the FrFD, propose a modified optimization method to estimate initial frequency and final frequency of fractional bandlimited LFM signals. In this algorithm, the differentiation fractional spectrum which is used to form observation matrix in OMP is derived from the spectrum analytical formulations of the LFM signal, and then, based on that the LFM signal has approximate rectangular spectrum in the FrFD and the correlation between the LFM signal and observation matrix yields a maximal value at the edge of the spectrum (see Sect.3.3 for details), the edge spectrum information can be extracted by OMP. Finally, the estimations of initial frequency and final frequency are obtained through multiplying the edge information by the sampling frequency resolution. The proposed method avoids reconstruction and the traditional peak-searching procedure, and the iterations are needed only twice. Thus, the computational complexity is much lower than that of the existing methods. Meanwhile, Since the vectors at the initial frequency and final frequency points both have larger modulus, so that the estimations are closer to the actual values, better normalized root mean squared error (NRMSE) performance can be achieved. Both theoretical analysis and simulation results demonstrate that the proposed algorithm bears a relatively low complexity and its estimation precision is higher than search-based and reconstruction-based algorithms.

  • Synchronized Tracking in Multiple Omnidirectional Cameras with Overlapping View

    Houari SABIRIN  Hitoshi NISHIMURA  Sei NAITO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/24
      Vol:
    E102-D No:11
      Page(s):
    2221-2229

    A multi-camera setup for a surveillance system enables a larger coverage area, especially when a single camera has limited monitoring capability due to certain obstacles. Therefore, for large-scale coverage, multiple cameras are the best option. In this paper, we present a method for detecting multiple objects using several cameras with large overlapping views as this allows synchronization of object identification from a number of views. The proposed method uses a graph structure that is robust enough to represent any detected moving objects by defining their vertices and edges to determine their relationships. By evaluating these object features, represented as a set of attributes in a graph, we can perform lightweight multiple object detection using several cameras, as well as performing object tracking within each camera's field of view and between two cameras. By evaluating each vertex hierarchically as a subgraph, we can further observe the features of the detected object and perform automatic separation of occluding objects. Experimental results show that the proposed method would improve the accuracy of object tracking by reducing the occurrences of incorrect identification compared to individual camera-based tracking.

841-860hit(8214hit)