The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

621-640hit(8214hit)

  • Strongly Secure Identity-Based Key Exchange with Single Pairing Operation

    Junichi TOMIDA  Atsushi FUJIOKA  Akira NAGAI  Koutarou SUZUKI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    58-68

    This paper proposes an id-eCK secure identity-based authenticated key exchange (ID-AKE) scheme, where the id-eCK security implies that a scheme resists against leakage of all combinations of master, static, and ephemeral secret keys except ones trivially break the security. Most existing id-eCK secure ID-AKE schemes require two symmetric pairing operations or a greater number of asymmetric pairing, which is faster than symmetric one, operations to establish a session key. However, our scheme is realized with a single asymmetric pairing operation for each party, and this is an advantage in efficiency. The proposed scheme is based on the ID-AKE scheme by McCullagh and Barreto, which is vulnerable to an active attack. To achieve id-eCK security, we apply the HMQV construction and the NAXOS technique to the McCullagh-Barreto scheme. The id-eCK security is proved under the external Diffie-Hellman for target group assumption and the q-gap-bilinear collision attack assumption.

  • Fuzzy Output Support Vector Machine Based Incident Ticket Classification

    Libo YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/10/14
      Vol:
    E104-D No:1
      Page(s):
    146-151

    Incident ticket classification plays an important role in the complex system maintenance. However, low classification accuracy will result in high maintenance costs. To solve this issue, this paper proposes a fuzzy output support vector machine (FOSVM) based incident ticket classification approach, which can be implemented in the context of both two-class SVMs and multi-class SVMs such as one-versus-one and one-versus-rest. Our purpose is to solve the unclassifiable regions of multi-class SVMs to output reliable and robust results by more fine-grained analysis. Experiments on both benchmark data sets and real-world ticket data demonstrate that our method has better performance than commonly used multi-class SVM and fuzzy SVM methods.

  • MLSE Based on Phase Difference FSM for GFSK Signals

    Kyu-Man LEE  Taek-Won KWON  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    328-331

    Bluetooth is a common wireless technology that is widely used as a connection medium between various consumer electronic devices. The receivers mostly adopt the Viterbi algorithm to improve a bit error rate performance but are hampered by heavy hardware complexity and computational load due to a coherent detection and searching for the unknown modulation index. To address these challenges, a non-coherent maximum likelihood estimation detector with an eight-state Viterbi is proposed for Gaussian frequency-shift keying symbol detection against an irrational modulation index, without any knowledge of prior information or assumptions. The simulation results showed an improvement in the performance compared to other ideal approaches.

  • Influence of Outliers on Estimation Accuracy of Software Development Effort

    Kenichi ONO  Masateru TSUNODA  Akito MONDEN  Kenichi MATSUMOTO  

     
    PAPER

      Pubricized:
    2020/10/02
      Vol:
    E104-D No:1
      Page(s):
    91-105

    When applying estimation methods, the issue of outliers is inevitable. The extent of their influence has not been clarified, though several studies have evaluated outlier elimination methods. It is unclear whether we should always be sensitive to outliers, whether outliers should always be removed before estimation, and what amount of precaution is required for collecting project data. Therefore, the goal of this study is to illustrate a guideline that suggests how sensitively we should handle outliers. In the analysis, we experimentally add outliers to three datasets, to analyze their influence. We modified the percentage of outliers, their extent (e.g., we varied the actual effort from 100 to 200 person-hours when the extent was 100%), the variables including outliers (e.g., adding outliers to function points or effort), and the locations of outliers in a dataset. Next, the effort was estimated using these datasets. We used multiple linear regression analysis and analogy based estimation to estimate the development effort. The experimental results indicate that the influence of outliers on the estimation accuracy is non-trivial when the extent or percentage of outliers is considerable (i.e., 100% and 20%, respectively). In contrast, their influence is negligible when the extent and percentage are small (i.e., 50% and 10%, respectively). Moreover, in some cases, the linear regression analysis was less affected by outliers than analogy based estimation.

  • Robust Fractional Lower Order Correntropy Algorithm for DOA Estimation in Impulsive Noise Environments

    Quan TIAN  Tianshuang QIU  Jitong MA  Jingchun LI  Rong LI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/06/29
      Vol:
    E104-B No:1
      Page(s):
    35-48

    In array signal processing, many methods of handling cases of impulsive noise with an alpha-stable distribution have been studied. By introducing correntropy with a robust statistical property, this paper proposes a novel fractional lower order correntropy (FLOCR) method. The FLOCR-based estimator for array outputs is defined and applied with multiple signal classification (MUSIC) to estimate the direction of arrival (DOA) in alpha-stable distributed noise environments. Comprehensive Monte Carlo simulation results demonstrate that FLOCR-MUSIC outperforms existing algorithms in terms of root mean square error (RMSE) and the probability of resolution, especially in the presence of highly impulsive noise.

  • Spatio-Temporal Self-Attention Weighted VLAD Neural Network for Action Recognition

    Shilei CHENG  Mei XIE  Zheng MA  Siqi LI  Song GU  Feng YANG  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2020/10/01
      Vol:
    E104-D No:1
      Page(s):
    220-224

    As characterizing videos simultaneously from spatial and temporal cues have been shown crucial for video processing, with the shortage of temporal information of soft assignment, the vector of locally aggregated descriptor (VLAD) should be considered as a suboptimal framework for learning the spatio-temporal video representation. With the development of attention mechanisms in natural language processing, in this work, we present a novel model with VLAD following spatio-temporal self-attention operations, named spatio-temporal self-attention weighted VLAD (ST-SAWVLAD). In particular, sequential convolutional feature maps extracted from two modalities i.e., RGB and Flow are receptively fed into the self-attention module to learn soft spatio-temporal assignments parameters, which enabling aggregate not only detailed spatial information but also fine motion information from successive video frames. In experiments, we evaluate ST-SAWVLAD by using competitive action recognition datasets, UCF101 and HMDB51, the results shcoutstanding performance. The source code is available at:https://github.com/badstones/st-sawvlad.

  • Privacy-Preserving Data Analysis: Providing Traceability without Big Brother

    Hiromi ARAI  Keita EMURA  Takuya HAYASHI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    2-19

    Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, the need to track certain data providers often arises, such as tracing specific patients or adversarial users. Thus, tracking only specific persons without revealing normal users' identities is quite important for operating information systems using personal data. It is difficult to know in advance the rules for specifying the necessity of tracking since the rules are derived by the analysis of collected data. Thus, it would be useful to provide a general way that can employ any data analysis method regardless of the type of data and the nature of the rules. In this paper, we propose a privacy-preserving data analysis construction that allows an authority to detect specific users while other honest users are kept anonymous. By using the cryptographic techniques of group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and data analysis method. It is particularly worth noting that no “big brother” exists, meaning that no single entity can identify users who do not provide anomaly data, while bad behaviors are always traceable. We show the result of implementing our construction. Briefly, the overhead of our construction is on the order of 10 ms for a single thread. We also confirm the efficiency of our construction by using a real-world dataset.

  • Singleton-Type Optimal LRCs with Minimum Distance 3 and 4 from Projective Code

    Qiang FU  Ruihu LI  Luobin GUO  Gang CHEN  

     
    LETTER-Coding Theory

      Vol:
    E104-A No:1
      Page(s):
    319-323

    Locally repairable codes (LRCs) are implemented in distributed storage systems (DSSs) due to their low repair overhead. The locality of an LRC is the number of nodes in DSSs that participate in the repair of failed nodes, which characterizes the repair cost. An LRC is called optimal if its minimum distance attains the Singleton-type upper bound [1]. In this letter, optimal LRCs are considered. Using the concept of projective code in projective space PG(k, q) and shortening strategy, LRCs with d=3 are proposed. Meantime, derived from an ovoid [q2+1, 4, q2]q code (responding to a maximal (q2+1)-cap in PG(3, q)), optimal LRCs over Fq with d=4 are constructed.

  • Expectation Propagation Decoding for Sparse Superposition Codes Open Access

    Hiroki MAYUMI  Keigo TAKEUCHI  

     
    LETTER-Coding Theory

      Pubricized:
    2020/07/06
      Vol:
    E103-A No:12
      Page(s):
    1666-1669

    Expectation propagation (EP) decoding is proposed for sparse superposition coding in orthogonal frequency division multiplexing (OFDM) systems. When a randomized discrete Fourier transform (DFT) dictionary matrix is used, the EP decoding has the same complexity as approximate message-passing (AMP) decoding, which is a low-complexity and powerful decoding algorithm for the additive white Gaussian noise (AWGN) channel. Numerical simulations show that the EP decoding achieves comparable performance to AMP decoding for the AWGN channel. For OFDM systems, on the other hand, the EP decoding is much superior to the AMP decoding while the AMP decoding has an error-floor in high signal-to-noise ratio regime.

  • Battery-Powered Wild Animal Detection Nodes with Deep Learning

    Hiroshi SAITO  Tatsuki OTAKE  Hayato KATO  Masayuki TOKUTAKE  Shogo SEMBA  Yoichi TOMIOKA  Yukihide KOHIRA  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1394-1402

    Since wild animals are causing more accidents and damages, it is important to safely detect them as early as possible. In this paper, we propose two battery-powered wild animal detection nodes based on deep learning that can automatically detect wild animals; the detection information is notified to the people concerned immediately. To use the proposed nodes outdoors where power is not available, we devise power saving techniques for the proposed nodes. For example, deep learning is used to save power by avoiding operations when wild animals are not detected. We evaluate the operation time and the power consumption of the proposed nodes. Then, we evaluate the energy consumption of the proposed nodes. Also, we evaluate the detection range of the proposed nodes, the accuracy of deep learning, and the success rate of communication through field tests to demonstrate that the proposed nodes can be used to detect wild animals outdoors.

  • Application Mapping and Scheduling of Uncertain Communication Patterns onto Non-Random and Random Network Topologies

    Yao HU  Michihiro KOIBUCHI  

     
    PAPER-Computer System

      Pubricized:
    2020/07/20
      Vol:
    E103-D No:12
      Page(s):
    2480-2493

    Due to recent technology progress based on big-data processing, many applications present irregular or unpredictable communication patterns among compute nodes in high-performance computing (HPC) systems. Traditional communication infrastructures, e.g., torus or fat-tree interconnection networks, may not handle well their matchmaking problems with these newly emerging applications. There are already many communication-efficient application mapping algorithms for these typical non-random network topologies, which use nearby compute nodes to reduce the network distances. However, for the above unpredictable communication patterns, it is difficult to efficiently map their applications onto the non-random network topologies. In this context, we recommend using random network topologies as the communication infrastructures, which have drawn increasing attention for the use of HPC interconnects due to their small diameter and average shortest path length (ASPL). We make a comparative study to analyze the impact of application mapping performance on non-random and random network topologies. We propose using topology embedding metrics, i.e., diameter and ASPL, and list several diameter/ASPL-based application mapping algorithms to compare their job scheduling performances, assuming that the communication pattern of each application is unpredictable to the computing system. Evaluation with a large compound application workload shows that, when compared to non-random topologies, random topologies can reduce the average turnaround time up to 39.3% by a random connected mapping method and up to 72.1% by a diameter/ASPL-based mapping algorithm. Moreover, when compared to the baseline topology mapping method, the proposed diameter/ASPL-based topology mapping strategy can reduce up to 48.0% makespan and up to 78.1% average turnaround time, and improve up to 1.9x system utilization over random topologies.

  • Acceleration of Automatic Building Extraction via Color-Clustering Analysis Open Access

    Masakazu IWAI  Takuya FUTAGAMI  Noboru HAYASAKA  Takao ONOYE  

     
    LETTER-Computer Graphics

      Vol:
    E103-A No:12
      Page(s):
    1599-1602

    In this paper, we improve upon the automatic building extraction method, which uses a variational inference Gaussian mixture model for performing color clustering, by accelerating its computational speed. The improved method decreases the computational time using an image with reduced resolution upon applying color clustering. According to our experiment, in which we used 106 scenery images, the improved method could extract buildings at a rate 86.54% faster than that of the conventional methods. Furthermore, the improved method significantly increased the extraction accuracy by 1.8% or more by preventing over-clustering using the reduced image, which also had a reduced number of the colors.

  • Robust Adaptive Beamforming Based on the Effective Steering Vector Estimation and Covariance Matrix Reconstruction against Sensor Gain-Phase Errors

    Di YAO  Xin ZHANG  Bin HU  Xiaochuan WU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/06/04
      Vol:
    E103-A No:12
      Page(s):
    1655-1658

    A robust adaptive beamforming algorithm is proposed based on the precise interference-plus-noise covariance matrix reconstruction and steering vector estimation of the desired signal, even existing large gain-phase errors. Firstly, the model of array mismatches is proposed with the first-order Taylor series expansion. Then, an iterative method is designed to jointly estimate calibration coefficients and steering vectors of the desired signal and interferences. Next, the powers of interferences and noise are estimated by solving a quadratic optimization question with the derived closed-form solution. At last, the actual interference-plus-noise covariance matrix can be reconstructed as a weighted sum of the steering vectors and the corresponding powers. Simulation results demonstrate the effectiveness and advancement of the proposed method.

  • Hue-Correction Scheme Considering Non-Linear Camera Response for Multi-Exposure Image Fusion

    Kouki SEO  Chihiro GO  Yuma KINOSHITA  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E103-A No:12
      Page(s):
    1562-1570

    We propose a novel hue-correction scheme for multi-exposure image fusion (MEF). Various MEF methods have so far been studied to generate higher-quality images. However, there are few MEF methods considering hue distortion unlike other fields of image processing, due to a lack of a reference image that has correct hue. In the proposed scheme, we generate an HDR image as a reference for hue correction, from input multi-exposure images. After that, hue distortion in images fused by an MEF method is removed by using hue information of the HDR one, on the basis of the constant-hue plane in the RGB color space. In simulations, the proposed scheme is demonstrated to be effective to correct hue-distortion caused by conventional MEF methods. Experimental results also show that the proposed scheme can generate high-quality images, regardless of exposure conditions of input multi-exposure images.

  • RPC: An Approach for Reducing Compulsory Misses in Packet Processing Cache

    Hayato YAMAKI  Hiroaki NISHI  Shinobu MIWA  Hiroki HONDA  

     
    PAPER-Information Network

      Pubricized:
    2020/09/07
      Vol:
    E103-D No:12
      Page(s):
    2590-2599

    We propose a technique to reduce compulsory misses of packet processing cache (PPC), which largely affects both throughput and energy of core routers. Rather than prefetching data, our technique called response prediction cache (RPC) speculatively stores predicted data in PPC without additional access to the low-throughput and power-consuming memory (i.e., TCAM). RPC predicts the data related to a response flow at the arrival of the corresponding request flow, based on the request-response model of internet communications. Our experimental results with 11 real-network traces show that RPC can reduce the PPC miss rate by 13.4% in upstream and 47.6% in downstream on average when we suppose three-layer PPC. Moreover, we extend RPC to adaptive RPC (A-RPC) that selects the use of RPC in each direction within a core router for further improvement in PPC misses. Finally, we show that A-RPC can achieve 1.38x table-lookup throughput with 74% energy consumption per packet, when compared to conventional PPC.

  • Transient Fault Tolerant State Assignment for Stochastic Computing Based on Linear Finite State Machines

    Hideyuki ICHIHARA  Motoi FUKUDA  Tsuyoshi IWAGAKI  Tomoo INOUE  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1464-1471

    Stochastic computing (SC), which is an approximate computation with probabilities, has attracted attention owing to its small area, small power consumption and high fault tolerance. In this paper, we focus on the transient fault tolerance of SC based on linear finite state machines (linear FSMs). We show that state assignment of FSMs considerably affects the fault tolerance of linear FSM-based SC circuits, and present a Markov model for representing the impact of the state assignment on the behavior of faulty FSMs and estimating the expected error significance of the faulty FSM-based SC circuits. Furthermore, we propose a heuristic algorithm for appropriate state assignment that can mitigate the influence of transient faults. Experimental analysis shows that the state assignment has an impact on the transient fault tolerance of linear FSM-based SC circuits and the proposed state assignment algorithm can achieve a quasi-optimal state assignment in terms of high fault tolerance.

  • Traffic-Independent Multi-Path Routing for High-Throughput Data Center Networks

    Ryuta KAWANO  Ryota YASUDO  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:12
      Page(s):
    2471-2479

    Network throughput has become an important issue for big-data analysis on Warehouse-Scale Computing (WSC) systems. It has been reported that randomly-connected inter-switch networks can enlarge the network throughput. For irregular networks, a multi-path routing method called k-shortest path routing is conventionally utilized. However, it cannot efficiently exploit longer-than-shortest paths that would be detour paths to avoid bottlenecks. In this work, a novel routing method called k-optimized path routing to achieve high throughput is proposed for irregular networks. We introduce a heuristic to select detour paths that can avoid bottlenecks in the network to improve the average-case network throughput. Experimental results by network simulation show that the proposed k-optimized path routing can improve the saturation throughput by up to 18.2% compared to the conventional k-shortest path routing. Moreover, it can reduce the computation time required for optimization to 1/2760 at a minimum compared to our previously proposed method.

  • Efficient Two-Opt Collective-Communication Operations on Low-Latency Random Network Topologies

    Ke CUI  Michihiro KOIBUCHI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/07/03
      Vol:
    E103-D No:12
      Page(s):
    2435-2443

    Random network topologies have been proposed as a low-latency network for parallel computers. Although multicast is a common collective-communication operation, multicast algorithms each of which consists of a large number of unicasts are not well optimized for random network topologies. In this study, we firstly apply a two-opt algorithm for building efficient multicast on random network topologies. The two-opt algorithm creates a skilled ordered list of visiting nodes to minimize the total path hops or the total possible contention counts of unicasts that form the target multicast. We secondly extend to apply the two-opt algorithm for the other collective-communication operations, e.g., allreduce and allgather. The SimGrid discrete-event simulation results show that the two-opt multicast outperforms that in typical MPI implementation by up to 22% of the execution time of an MPI program that repeats the MPI_Bcast function. The two-opt allreduce and the two-opt allgather operations also improve by up to 15% and 14% the execution time when compared to those used in typical MPI implementations, respectively.

  • Theoretical Analyses of Maximum Cyclic Autocorrelation Selection Based Spectrum Sensing

    Shusuke NARIEDA  Daiki CHO  Hiromichi OGASAWARA  Kenta UMEBAYASHI  Takeo FUJII  Hiroshi NARUSE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/06/22
      Vol:
    E103-B No:12
      Page(s):
    1462-1469

    This paper provides theoretical analyses for maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing techniques in cognitive radio networks. The MCAS-based spectrum sensing techniques are low computational complexity spectrum sensing in comparison with some cyclostationary detection. However, MCAS-based spectrum sensing characteristics have never been theoretically derived. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the values match well with each other.

  • Loss Function Considering Multiple Attributes of a Temporal Sequence for Feed-Forward Neural Networks

    Noriyuki MATSUNAGA  Yamato OHTANI  Tatsuya HIRAHARA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/08/31
      Vol:
    E103-D No:12
      Page(s):
    2659-2672

    Deep neural network (DNN)-based speech synthesis became popular in recent years and is expected to soon be widely used in embedded devices and environments with limited computing resources. The key intention of these systems in poor computing environments is to reduce the computational cost of generating speech parameter sequences while maintaining voice quality. However, reducing computational costs is challenging for two primary conventional DNN-based methods used for modeling speech parameter sequences. In feed-forward neural networks (FFNNs) with maximum likelihood parameter generation (MLPG), the MLPG reconstructs the temporal structure of the speech parameter sequences ignored by FFNNs but requires additional computational cost according to the sequence length. In recurrent neural networks, the recursive structure allows for the generation of speech parameter sequences while considering temporal structures without the MLPG, but increases the computational cost compared to FFNNs. We propose a new approach for DNNs to acquire parameters captured from the temporal structure by backpropagating the errors of multiple attributes of the temporal sequence via the loss function. This method enables FFNNs to generate speech parameter sequences by considering their temporal structure without the MLPG. We generated the fundamental frequency sequence and the mel-cepstrum sequence with our proposed method and conventional methods, and then synthesized and subjectively evaluated the speeches from these sequences. The proposed method enables even FFNNs that work on a frame-by-frame basis to generate speech parameter sequences by considering the temporal structure and to generate sequences perceptually superior to those from the conventional methods.

621-640hit(8214hit)