The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

1841-1860hit(8214hit)

  • Multicore Fiber Connector with Physical-Contact Connection

    Kota SHIKAMA  Yoshiteru ABE  Shuichiro ASAKAWA  Shuichi YANAGI  Tetsuo TAKAHASHI  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    242-249

    We describe a physical-contact (PC) multicore fiber (MCF) connector with good optical characteristics. To achieve stable physical-contact connection, we clarify the relationship between connector-end deformation and compression force with spherical polished ferrule end structures using finite element analysis and actual measurements. On the basis of the obtained relationship, we demonstrate a design approach that shows the physical-contact condition of all the cores of a multicore fiber with a simplex connector. In addition, we clarify the design criteria for low-loss connection by employing a rotational angle alignment structure, and devise an SC-type rotational MCF connector with high alignment accuracy. Based on our designs for PC and low-loss connection, we demonstrate an MCF connector with PC connection that provides a sufficiently high return loss exceeding 50dB and a sufficiently low connection loss of below 0.2dB for all the cores of a 7-core single-mode MCF.

  • On the Nonexistence of Almost Difference Sets Constructed from the Set of Octic Residues

    Minglong QI  Shengwu XIONG  Jingling YUAN  Wenbi RAO  Luo ZHONG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:2
      Page(s):
    666-673

    Pseudorandom binary sequences balanced and with optimal autocorrelation have many applications in the stream cipher, communication, coding theory, etc. Constructing a binary sequences with three-level autocorrelation is equivalent to finding the corresponding characteristic set of the sequences that should be an almost difference set. In the work of T.W. Cusick, C. Ding, and A. Renvall in 1998, the authors gave the necessary and sufficient conditions by which a set of octic residues modulo an odd prime forms an almost difference set. In this paper we show that no integers verify those conditions by the theory of generalized Pell equations. In addition, by relaxing the definition of almost difference set given by the same authors, we could construct two classes of modified almost difference sets and two ones of difference sets from the set of octic residues.

  • Offline Selective Data Deduplication for Primary Storage Systems

    Sejin PARK  Chanik PARK  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2015/10/26
      Vol:
    E99-D No:2
      Page(s):
    370-382

    Data deduplication is a technology that eliminates redundant data to save storage space. Most previous studies on data deduplication target backup storage, where the deduplication ratio and throughput are important. However, data deduplication on primary storage has recently been receiving attention; in this case, I/O latency should be considered equally with the deduplication ratio. Unfortunately, data deduplication causes high sequential-read-latency problems. When a file is created, the file system allocates physically contiguous blocks to support low sequential-read latency. However, the data deduplication process rearranges the block mapping information to eliminate duplicate blocks. Because of this rearrangement, the physical sequentiality of blocks in a file is broken. This makes a sequential-read request slower because it operates like a random-read operation. In this paper, we propose a selective data deduplication scheme for primary storage systems. A selective scheme can achieve a high deduplication ratio and a low I/O latency by applying different data-chunking methods to the files, according to their file access characteristics. In the proposed system, file accesses are characterized by recent access time and the access frequency of each file. No chunking is applied to update-intensive files since they are meaningless in terms of data deduplication. For sequential-read-intensive files, we apply big chunking to preserve their sequentiality on the media. For random-read-intensive files, small chunking is used to increase the deduplication ratio. Experimental evaluation showed that the proposed method achieves a maximum of 86% of an ideal deduplication ratio and 97% of the sequential-read performance of a native file system.

  • A Method for Extraction of Future Reference Sentences Based on Semantic Role Labeling

    Yoko NAKAJIMA  Michal PTASZYNSKI  Hirotoshi HONMA  Fumito MASUI  

     
    PAPER-Natural Language Processing

      Pubricized:
    2015/11/18
      Vol:
    E99-D No:2
      Page(s):
    514-524

    In everyday life, people use past events and their own knowledge in predicting probable unfolding of events. To obtain the necessary knowledge for such predictions, newspapers and the Internet provide a general source of information. Newspapers contain various expressions describing past events, but also current and future events, and opinions. In our research we focused on automatically obtaining sentences that make reference to the future. Such sentences can contain expressions that not only explicitly refer to future events, but could also refer to past or current events. For example, if people read a news article that states “In the near future, there will be an upward trend in the price of gasoline,” they may be likely to buy gasoline now. However, if the article says “The cost of gasoline has just risen 10 yen per liter,” people will not rush to buy gasoline, because they accept this as reality and may expect the cost to decrease in the future. In the following study we firstly investigate future reference sentences in newspapers and Web news. Next, we propose a method for automatic extraction of such sentences by using semantic role labels, without typical approaches (temporal expressions, etc.). In a series of experiments, we extract semantic role patterns from future reference sentences and examine the validity of the extracted patterns in classification of future reference sentences.

  • Proof Test of Chaos-Based Hierarchical Network Control Using Packet-Level Network Simulation

    Yusuke SAKUMOTO  Chisa TAKANO  Masaki AIDA  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E99-B No:2
      Page(s):
    402-411

    Computer networks require sophisticated control mechanisms to realize fair resource allocation among users in conjunction with efficient resource usage. To successfully realize fair resource allocation in a network, someone should control the behavior of each user by considering fairness. To provide efficient resource utilization, someone should control the behavior of all users by considering efficiency. To realize both control goals with different granularities at the same time, a hierarchical network control mechanism that combines microscopic control (i.e., fairness control) and macroscopic control (i.e., efficiency control) is required. In previous works, Aida proposed the concept of chaos-based hierarchical network control. Next, as an application of the chaos-based concept, Aida designed a fundamental framework of hierarchical transmission rate control based on the chaos of coupled relaxation oscillators. To clarify the realization of the chaos-based concept, one should specify the chaos-based hierarchical transmission rate control in enough detail to work in an actual network, and confirm that it works as intended. In this study, we implement the chaos-based hierarchical transmission rate control in a popular network simulator, ns-2, and confirm its operation through our experimentation. Results verify that the chaos-based concept can be successfully realized in TCP/IP networks.

  • An Improved Indirect Attribute Weighted Prediction Model for Zero-Shot Image Classification

    Yuhu CHENG  Xue QIAO  Xuesong WANG  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/11/20
      Vol:
    E99-D No:2
      Page(s):
    435-442

    Zero-shot learning refers to the object classification problem where no training samples are available for testing classes. For zero-shot learning, attribute transfer plays an important role in recognizing testing classes. One popular method is the indirect attribute prediction (IAP) model, which assumes that all attributes are independent and equally important for learning the zero-shot image classifier. However, a more practical assumption is that different attributes contribute unequally to the classifier learning. We therefore propose assigning different weights for the attributes based on the relevance probabilities between the attributes and the classes. We incorporate such weighed attributes to IAP and propose a relevance probability-based indirect attribute weighted prediction (RP-IAWP) model. Experiments on four popular attributed-based learning datasets show that, when compared with IAP and RFUA, the proposed RP-IAWP yields more accurate attribute prediction and zero-shot image classification.

  • An On-Chip Measurement of PLL Transfer Function and Lock Range through Fully Digital Interface

    Toshiyuki KIKKAWA  Toru NAKURA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:2
      Page(s):
    275-284

    This paper proposes an on-chip measurement method of PLL through fully digital interface. For the measurement of the PLL transfer function, we modulated the phase of the PLL input in triangular form using Digital-to-Time Converter (DTC) and read out the response by Time-to-Digital Converter (TDC). Combination of the DTC and TDC can obtain the transfer function of the PLL both in the magnitude domain and the phase domain. Since the DTC and TDC can be controlled and observed by digital signals, the measurement can be conducted without any high speed analog signal. Moreover, since the DTC and TDC can be designed symmetrically, the measurement method is robust against Process, Voltage, and Temperature (PVT) variations. At the same time, the employment of the TDC also enables a measurement of the PLL lock range by changing the division ratio of the divider. Two time domain circuits were designed using 180nm CMOS process and the HSPICE simulation results demonstrated the measurement of the transfer function and lock range.

  • MEMD-Based Filtering Using Interval Thresholding and Similarity Measure between Pdf of IMFs

    Huan HAO  Huali WANG  Weijun ZENG  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:2
      Page(s):
    643-646

    This paper presents a novel MEMD interval thresholding denoising, where relevant modes are selected by the similarity measure between the probability density functions of the input and that of each mode. Simulation and measured EEG data processing results show that the proposed scheme achieves better performance than other traditional denoisings.

  • A Tightly-Secure Multisignature Scheme with Improved Verification

    Jong Hwan PARK  Young-Ho PARK  

     
    PAPER-Cryptography and Information Security

      Vol:
    E99-A No:2
      Page(s):
    579-589

    A multisignature (MS) scheme enables a group of signers to produce a compact signature on a common message. In analyzing security of MS schemes, a key registration protocol with proof-of-possession (POP) is considered to prevent rogue key attacks. In this paper, we refine the POP-based security model by formalizing a new strengthened POP model and showing relations between the previous POP models and the new one. We next suggest a MS scheme that achieves: (1) non-interactive signing process, (2) O(1) pairing computations in verification, (3) tight security reduction under the co-CDH assumption, and (4) security under the new strengthened POP model. Compared to the tightly-secure BNN-MS scheme, the verification in ours can be at least 7 times faster at the 80-bit security level and 10 times faster at the 128-bit security level. To achieve our goal, we introduce a novel and simple POP generation method that can be viewed as a one-time signature without random oracles. Our POP technique can also be applied to the LOSSW-MS scheme (without random oracles), giving the security in the strengthened POP model.

  • DNN-Based Voice Activity Detection with Multi-Task Learning

    Tae Gyoon KANG  Nam Soo KIM  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/10/26
      Vol:
    E99-D No:2
      Page(s):
    550-553

    Recently, notable improvements in voice activity detection (VAD) problem have been achieved by adopting several machine learning techniques. Among them, the deep neural network (DNN) which learns the mapping between the noisy speech features and the corresponding voice activity status with its deep hidden structure has been one of the most popular techniques. In this letter, we propose a novel approach which enhances the robustness of DNN in mismatched noise conditions with multi-task learning (MTL) framework. In the proposed algorithm, a feature enhancement task for speech features is jointly trained with the conventional VAD task. The experimental results show that the DNN with the proposed framework outperforms the conventional DNN-based VAD algorithm.

  • Event-Triggered and Self-Triggered Control for Networked Control Systems Using Online Optimization

    Koichi KOBAYASHI  Kunihiko HIRAISHI  

     
    PAPER

      Vol:
    E99-A No:2
      Page(s):
    468-474

    Event-triggered and self-triggered control methods are an important control strategy in networked control systems. Event-triggered control is a method that the measured signal is sent to the controller (i.e., the control input is recomputed) only when a certain condition is satisfied. Self-triggered control is a method that the control input and the (non-uniform) sampling interval are computed simultaneously. In this paper, we propose new methods of event-triggered control and self-triggered control from the viewpoint of online optimization (i.e., model predictive control). In self-triggered control, the control input and the sampling interval are obtained by solving a pair of a quadratic programming (QP) problem and a mixed integer linear programming (MILP) problem. In event-triggered control, whether the control input is updated or not is determined by solving two QP problems. The effectiveness of the proposed methods is presented by numerical examples.

  • An Interference Rejection Combining Technique for an SFBC-OFDM System with Multiple Carrier Frequency Offsets

    Mina LEE  Rothna PEC  Kyu Seok KIM  Chang Hwan PARK  Yong Soo CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    481-487

    In this paper, an interference rejection combining (IRC) technique is proposed for SFBC-OFDM cellular systems that exhibit multiple carrier frequency offsets (CFOs). The IRC weight and the corresponding value for CFO compensation in the proposed technique are obtained by maximizing the post-SINR, i.e., minimizing both the interference signal and inter-channel interference (ICI) terms caused by multiple CFOs. The performance of the conventional IRC and proposed IRC techniques is evaluated by computer simulation for an SFBC-OFDM cellular system with multiple CFOs.

  • Performance of ZigBee Based Fall Detection Alarm System

    Mohamed Hadi HABAEBI  Mabruka Mohamed AGEL  Alhareth ZYOUD  

     
    PAPER-Network

      Vol:
    E99-B No:2
      Page(s):
    385-391

    Accidental falling among elderly people has become a public health concern. Thus, there is a need for systems that detect a fall when it happens. This paper presents a portable real-time remote health monitoring system that can remotely monitor patients' movements. The system is designed and implemented using ZigBee wireless technologies, and the data is analysed using Matlab. The purpose of this research is to determine the acceleration thresholds for fall detection, using tri-axial accelerometer readings at the head, waist, and knee. Seven voluntary subjects performed purposeful falls and Activities of Daily Living (ADL). The results indicated that measurements from the waist and head can accurately detect falls; the sensitivity and reliability measurements of fall detection ranged between 80% and 90%. In contrast, the measurements showed that the knee is not a useful position for the fall detection.

  • A Workload Assignment Policy for Reducing Power Consumption in Software-Defined Data Center Infrastructure

    Takaaki DEGUCHI  Yoshiaki TANIGUCHI  Go HASEGAWA  Yutaka NAKAMURA  Norimichi UKITA  Kazuhiro MATSUDA  Morito MATSUOKA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E99-B No:2
      Page(s):
    347-355

    In this paper, we propose a workload assignment policy for reducing power consumption by air conditioners in data centers. In the proposed policy, to reduce the air conditioner power consumption by raising the temperature set points of the air conditioners, the temperatures of all server back-planes are equalized by moving workload from the servers with the highest temperatures to the servers with the lowest temperatures. To evaluate the proposed policy, we use a computational fluid dynamics simulator for obtaining airflow and air temperature in data centers, and an air conditioner model based on experimental results from actual data center. Through evaluation, we show that the air conditioners' power consumption is reduced by 10.4% in a conventional data center. In addition, in a tandem data center proposed in our research group, the air conditioners' power consumption is reduced by 53%, and the total power consumption of the whole data center is exhibited to be reduced by 23% by reusing the exhaust heat from the servers.

  • Towards Route Dynamics in AS-Level Path Prediction

    Shen SU  Binxing FANG  

     
    PAPER-Internet

      Vol:
    E99-B No:2
      Page(s):
    412-421

    Predicting the routing paths between any given pair of Autonomous Systems (ASes) is very useful in network diagnosis, traffic engineering, and protocol analysis. Existing methods address this problem by resolving the best path with a snapshot of BGP (Border Gateway Protocol) routing tables. However, due to route deficiencies, routing policy changes, and other causes, the best path changes over time. Consequently, existing methods for path prediction fail to capture route dynamics. To predict AS-level paths in dynamic scenarios (e.g. network failures), we propose a per-neighbor path ranking model based on how long the paths have been used, and apply this routing model to extract each AS's route choice configurations for the paths observed in BGP data. With route choice configurations to multiple paths, we are able to predict the path in case of multiple network scenarios. We further build the model with strict policies to ensure our model's routing convergence; formally prove that it converges; and discuss the path prediction capturing routing dynamics by disabling links. By evaluating the consistency between our model's routing and the actually observed paths, we show that our model outperforms the state-of-the-art work [4].

  • A Full-Flexibility-Guaranteed Pin-Count Reduction Design for General-Purpose Digital Microfluidic Biochips

    Trung Anh DINH  Shigeru YAMASHITA  Tsung-Yi HO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:2
      Page(s):
    570-578

    Different from application-specific digital microfluidic biochips, a general-purpose design has several advantages such as dynamic reconfigurability, and fast on-line evaluation for real-time applications. To achieve such superiority, this design typically activates each electrode in the chip using an individual control pin. However, as the design complexity increases substantially, an order-of-magnitude increase in the number of control pins will significantly affect the manufacturing cost. To tackle this problem, several methods adopting a pin-sharing mechanism for general-purpose designs have been proposed. Nevertheless, these approaches sacrifice the flexibility of droplet movement, and result in an increase of bioassay completion time. In this paper, we present a novel pin-count reduction design methodology for general-purpose microfluidic biochips. Distinguished from previous approaches, the proposed methodology not only reduces the number of control pins significantly but also guarantees the full flexibility of droplet movement to ensure the minimal bioassay completion time.

  • MTF-Based Kalman Filtering with Linear Prediction for Power Envelope Restoration in Noisy Reverberant Environments

    Yang LIU  Shota MORITA  Masashi UNOKI  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:2
      Page(s):
    560-569

    This paper proposes a method based on modulation transfer function (MTF) to restore the power envelope of noisy reverberant speech by using a Kalman filter with linear prediction (LP). Its advantage is that it can simultaneously suppress the effects of noise and reverberation by restoring the smeared MTF without measuring room impulse responses. This scheme has two processes: power envelope subtraction and power envelope inverse filtering. In the subtraction process, the statistical properties of observation noise and driving noise for power envelope are investigated for the criteria of the Kalman filter which requires noise to be white and Gaussian. Furthermore, LP coefficients drastically affect the Kalman filter performance, and a method is developed for deriving LP coefficients from noisy reverberant speech. In the dereverberation process, an inverse filtering method is applied to remove the effects of reverberation. Objective experiments were conducted under various noisy reverberant conditions to evaluate how well the proposed Kalman filtering method based on MTF improves the signal-to-error ratio (SER) and correlation between restored power envelopes compared with conventional methods. Results showed that the proposed Kalman filtering method based on MTF can improve SER and correlation more than conventional methods.

  • Robust and Low Complexity Bandwidth and Carrier Frequency Estimation for Cognitive Radio

    Hiroyuki KAMATA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    499-506

    Cognitive radio (CR) is an important technology to provide high-efficiency data communication for the IoT (Internet of Things) era. Signal detection is a key technology of CR to detect communication opportunities. Energy detection (ED) is a signal detection method that does not have high computational complexity. It, however, can only estimate the presence or absence of signal(s) in the observed band. Cyclostationarity detection (CS) is an alternative signal detection method. This method detects some signal features like periodicity. It can estimate the symbol rate of a signal if present. It, however, incurs high computational complexity. In addition, it cannot estimate the symbol rate precisely in the case of single carrier signal with a low Roll-Off factor (ROF). This paper proposes a method to estimate coarsely a signal's bandwidth and carrier frequency from its power spectrum with lower computational complexity than the CS. The proposed method can estimate the bandwidth and carrier frequency of even a low ROF signal. This paper evaluates the proposed method's performance by numerical simulations. The numerical results show that in all cases the proposed coarse bandwidth and carrier frequency estimation is almost comparable to the performance of CS with lower computational complexity and even outperforms in the case of single carrier signal with a low ROF. The proposed method is generally effective for unidentified classification of the signal i.e. single carrier, OFDM etc.

  • Improvement of Auctioneer's Revenue under Incomplete Information in Cognitive Radio Networks

    Jun MA  Yonghong ZHANG  Shengheng LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/11/17
      Vol:
    E99-D No:2
      Page(s):
    533-536

    In this letter, the problem of how to set reserve prices so as to improve the primary user's revenue in the second price-sealed auction under the incomplete information of secondary users' private value functions is investigated. Dirichlet process is used to predict the next highest bid based on historical data of the highest bids. Before the beginning of the next auction round, the primary user can obtain a reserve price by maximizing the additional expected reward. Simulation results show that the proposed scheme can achieve an improvement of the primary user's averaged revenue compared with several counterparts.

  • Low-Rank and Sparse Decomposition Based Frame Difference Method for Small Infrared Target Detection in Coastal Surveillance

    Weina ZHOU  Xiangyang XUE  Yun CHEN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/11/11
      Vol:
    E99-D No:2
      Page(s):
    554-557

    Detecting small infrared targets is a difficult but important task in highly cluttered coastal surveillance. The paper proposed a method called low-rank and sparse decomposition based frame difference to improve the detection performance of a surveillance system. First, the frame difference is used in adjacent frames to detect the candidate object regions which we are most interested in. Then we further exclude clutters by low-rank and sparse matrix recovery. Finally, the targets are extracted from the recovered target component by a local self-adaptive threshold. The experiment results show that, the method could effectively enhance the system's signal-to-clutter ratio gain and background suppression factor, and precisely extract target in highly cluttered coastal scene.

1841-1860hit(8214hit)