Thao-Nguyen TRUONG Ryousei TAKANO
Data parallelism is the dominant method used to train deep learning (DL) models on High-Performance Computing systems such as large-scale GPU clusters. When training a DL model on a large number of nodes, inter-node communication becomes bottle-neck due to its relatively higher latency and lower link bandwidth (than intra-node communication). Although some communication techniques have been proposed to cope with this problem, all of these approaches target to deal with the large message size issue while diminishing the effect of the limitation of the inter-node network. In this study, we investigate the benefit of increasing inter-node link bandwidth by using hybrid switching systems, i.e., Electrical Packet Switching and Optical Circuit Switching. We found that the typical data-transfer of synchronous data-parallelism training is long-lived and rarely changed that can be speed-up with optical switching. Simulation results on the Simgrid simulator show that our approach speed-up the training time of deep learning applications, especially in a large-scale manner.
Shinpei OSHIMA Hiroto MARUYAMA
In this paper, we propose a design method for a diplexer using a surface acoustic wave (SAW) filter, a multilayer ceramic filter, chip inductors, and chip capacitors. A controllable transmission zero can be created in the stopband by designing matching circuits based on the out-of-band characteristics of the SAW filter using this method. The proposed method can achieve good attenuation performance and a compact size because it does not use an additional resonator for creating the controllable transmission zero and the matching circuits are composed of only five components. A diplexer is designed for 2.4 GHz wireless systems and a global positioning system receiver using the proposed method. It is compact (8.0 mm × 8.0 mm), and the measurement results indicate good attenuation performance with the controllable transmission zero.
Cache prefetching technique brings huge benefits to performance improvement, but it comes at the cost of microarchitectural security in processors. In this letter, we deep dive into internal workings of a DCUIP prefetcher, which is one of prefetchers equipped in Intel processors. We discover that a DCUIP table is shared among different execution contexts in hyperthreading-enabled processors, which leads to another microarchitectural vulnerability. By exploiting the vulnerability, we propose a DCUIP poisoning attack. We demonstrate an AES encryption key can be extracted from an AES-NI implementation by mounting the proposed attack.
Akira ITO Rei UENO Naofumi HOMMA
This study presents a formal verification method for Galois-field (GF) arithmetic circuits with the characteristics of more than two values. The proposed method formally verifies the correctness of circuit functionality (i.e., the input-output relations given as GF-polynomials) by checking the equivalence between a specification and a gate-level netlist. We represent a netlist using simultaneous algebraic equations and solve them based on a novel polynomial reduction method that can be efficiently applied to arithmetic over extension fields $mathbb{F}_{p^m}$, where the characteristic p is larger than two. By using the reverse topological term order to derive the Gröbner basis, our method can complete the verification, even when a target circuit includes bugs. In addition, we introduce an extension of the Galois-Field binary moment diagrams to perform the polynomial reductions faster. Our experimental results show that the proposed method can efficiently verify practical $mathbb{F}_{p^m}$ arithmetic circuits, including those used in modern cryptography. Moreover, we demonstrate that the extended polynomial reduction technique can enable verification that is up to approximately five times faster than the original one.
Toshishige SHIMAMURA Hiroki MORIMURA
A new threshold circuit technique is proposed for a vibration sensing circuit that operates at a nanowatt power level. The sensing circuits that use sample-and-hold require a clock signal, and they consume power to generate a signal. In the use of a Schmitt trigger circuit that does not use a clock signal, a sink current flows when thresholding the analog signal output. The requirements for millimeter-sized wireless sensor nodes are an average power on the order of a nanowatt and a signal transition time of less than 1 ms. To meet these requirements, our circuit limits the sink current with a nanoampere-level current source. The chattering caused by current limiting is suppressed by feeding back the change in output voltage to the limiting current. The increase in the signal transition time that is caused by current limiting is reduced by accelerating the discharge of the load capacitance. For a test chip fabricated in the 0.35-µm CMOS process, the proposed threshold circuits operate without chattering and the average powers are 0.7-3 nW. The signal transition times are estimated in a circuit simulation to be 65-97 µs. The proposed circuit has 1/150th the power-delay product with no time interval of the sensing operation under the condition that the time interval is 1s. These results indicate that, the proposed threshold circuits are suitable for vibration sensing in millimeter-sized wireless sensor nodes.
Yuta UKON Shimpei SATO Atsushi TAKAHASHI
Advanced information-processing services such as computer vision require a high-performance digital circuit to perform high-load processing at high speed. To achieve high-speed processing, several image-processing applications use an approximate computing technique to reduce idle time of the circuit. However, it is difficult to design the high-speed image-processing circuit while controlling the error rate so as not to degrade service quality, and this technique is used for only a few applications. In this paper, we propose a method that achieves high-speed processing effectively in which processing time for each task is changed by roughly detecting its completion. Using this method, a high-speed processing circuit with a low error rate can be designed. The error rate is controllable, and a circuit design method to minimize the error rate is also presented in this paper. To confirm the effectiveness of our proposal, a ripple-carry adder (RCA), 2-dimensional discrete cosine transform (2D-DCT) circuit, and histogram of oriented gradients (HOG) feature calculation circuit are evaluated. Effective clock periods of these circuits obtained by our method with around 1% error rate are improved about 64%, 6%, and 12%, respectively, compared with circuits without error. Furthermore, the impact of the miscalculation on a video monitoring service using an object detection application is investigated. As a result, more than 99% of detection points required to be obtained are detected, and it is confirmed the miscalculation hardly degrades the service quality.
This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.
Aryo PINANDITO Yusuke HAYASHI Tsukasa HIRASHIMA
Concept map has been widely used as an interactive media to deliver contents in learning. Incorporating concept maps into collaborative learning could promote more interactive and meaningful learning environments. Furthermore, delivering concept maps in a digital form, such as in Kit-Build concept map, could improve learning interaction further. Collaborative learning with Kit-Build concept map has been shown to have positive effects on students' understanding. The way students compose their concept maps while discussing with others is presumed to affect their learning. However, supporting collaborative learning in an online setting is formidable to keep the interaction meaningful and fluid. This study proposed a new approach of real-time collaborative learning with Kit-Build concept map. This study also investigated how concept map recomposition with Kit-Build concept map could help students collaboratively learn EFL reading comprehension from a distance by comparing it with the traditional open-ended concept mapping approach. The learning effect and students' conversation during collaboration with the proposed online Kit-Build concept map system were investigated. Comparative analysis with a traditional collaborative concept mapping approach is also presented. The results suggested that collaborative learning with Kit-Build concept map yielded better outcomes and more meaningful discussion than the traditional open-end concept mapping.
Masakazu IWAMURA Shunsuke MORI Koichiro NAKAMURA Takuya TANOUE Yuzuko UTSUMI Yasushi MAKIHARA Daigo MURAMATSU Koichi KISE Yasushi YAGI
Most gait recognition approaches rely on silhouette-based representations due to high recognition accuracy and computational efficiency. A fundamental problem for those approaches is how to extract individuality-preserved silhouettes from real scenes accurately. Foreground colors may be similar to background colors, and the background is cluttered. Therefore, we propose a method of individuality-preserving silhouette extraction for gait recognition using standard gait models (SGMs) composed of clean silhouette sequences of various training subjects as shape priors. The SGMs are smoothly introduced into a well-established graph-cut segmentation framework. Experiments showed that the proposed method achieved better silhouette extraction accuracy by more than 2.3% than representative methods and better identification rate of gait recognition (improved by more than 11.0% at rank 20). Besides, to reduce the computation cost, we introduced approximation in the calculation of dynamic programming. As a result, without reducing the segmentation accuracy, we reduced 85.0% of the computational cost.
Zheng WAN Kaizhi HUANG Lu CHEN
In this paper, a deep learning-based secret key generation scheme is proposed for FDD multiple-input and multiple-output (MIMO) systems. We built an encoder-decoder based convolutional neural network to characterize the wireless environment to learn the mapping relationship between the uplink and downlink channel. The designed neural network can accurately predict the downlink channel state information based on the estimated uplink channel state information without any information feedback. Random secret keys can be generated from downlink channel responses predicted by the neural network. Simulation results show that deep learning based SKG scheme can achieve significant performance improvement in terms of the key agreement ratio and achievable secret key rate.
Tsutomu MATSUMOTO Makoto IKEDA Makoto NAGATA Yasuyoshi UEMURA
The Internet of Things (IoT) implicates an infrastructure that creates new value by connecting everything with communication networks, and its construction is rapidly progressing in anticipation of its great potential. Enhancing the security of IoT is an essential requirement for supporting IoT. For ensuring IoT security, it is desirable to create a situation that even a terminal component device with many restrictions in computing power and energy capacity can easily verify other devices and data and communicate securely by the use of public key cryptography. To concretely achieve the big goal of penetrating public key cryptographic technology to most IoT end devices, we elaborated the secure cryptographic unit (SCU) built in a low-end microcontroller chip. The SCU comprises a hardware cryptographic engine and a built-in access controlling functionality consisting of a software gate and hardware gate. This paper describes the outline of our SCU construction technology's research and development and prospects.
Miho SHINOHARA Yukina TAMURA Shinya MOCHIDUKI Hiroaki KUDO Mitsuho YAMADA
We investigated the function in the Lateral Geniculate Nucleus of avoidance behavior due to the inconsistency between binocular retinal images due to blue from vergence eye movement based on avoidance behavior caused by the inconsistency of binocular retinal images when watching the rim of a blue-yellow equiluminance column.
We propose a video magnification method for magnifying subtle color and motion changes under the presence of non-meaningful background motions. We use frequency variability to design a filter that passes only meaningful subtle changes and removes non-meaningful ones; our method obtains more impressive magnification results without artifacts than compared methods.
Dai TAGUCHI Takaaki MANAKA Mitsumasa IWAMOTO
Triboelectric generator is attracting much attention as a power source of electronics application. Electromotive force induced by rubbing is a key for triboelectric generator. From dielectric physics point of view, there are two microscopic origins for electromotive force, i.e., electronic charge displacement and dipolar rotation. A new way for evaluating these two origins is an urgent task. We have been developing an optical second-harmonic generation (SHG) technique as a tool for probing charge displacement and dipolar alignment, selectively, by utilizing wavelength dependent response of SHG to the two origins. In this paper, an experimental way that identifies polarity of electronic charge displacement, i.e., positive charge and negative charge, is proposed. Results showed that the use of local oscillator makes it possible to identify the polarity of charges by means of SHG. As an example, positive and negative charge distribution created by rubbing polyimide surface is illustrated.
Yuya TANAKA Yuki TAZO Hisao ISHII
In vacuum-deposited film composed of organic polar molecules, polarization charges appear on the film surface owing to spontaneous orientation of the molecule. Because its density (σpol) determines an amount of accumulation charge (σacc) in organic light-emitting diodes and output power in polar molecular-based vibrational energy generators (VEGs), control of molecular orientation is highly required. Recently, several groups have reported that dipole-dipole interaction between polar molecules induces anti-parallel orientation which does not contribute to σpol. In other words, perturbation inducing the attenuation of the dipole interaction is needed to enhance σpol. In this study, to investigate an effect of light irradiation on σpol, we prepared 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) film under illumination during its deposition, and evaluated the σacc in TPBi-based bilayer device, which equals to σpol. We found that the σacc was increased by light irradiation, indicating that average orientation of TPBi is enhanced. These results suggest that light irradiation during device fabrication is promising process for organic electronic devices including polar molecule-based VEGs.
Guangna ZHANG Yuanyuan GAO Huadong LUO Xiaochen LIU Nan SHA Kui XU
In this paper, we explore the physical layer security of an Internet of Things (IoT) network comprised of multiple relay-user pairs in the presence of multiple malicious eavesdroppers and channel estimation error (CEE). In order to guarantee secure transmission with channel estimation error, we propose a channel estimation error oriented joint relay-user pair and friendly jammer selection (CEE-JRUPaFJS) scheme to improve the physical layer security of IoT networks. For the purpose of comparison, the channel estimation error oriented traditional round-robin (CEE-TRR) scheme and the channel estimation error oriented traditional pure relay-user pair selection (CEE-TPRUPS) scheme are considered as benchmark schemes. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the CEE-TRR and CEE-TPRUPS schemes as well as the CEE-JRUPaFJS scheme are derived over Rayleigh fading channels, which are employed to characterize network reliability and security, respectively. Moreover, the security-reliability tradeoff (SRT) is analyzed as a metric to evaluate the tradeoff performance of CEE-JRUPaFJS scheme. It is verified that the proposed CEE-JRUPaFJS scheme is superior to both the CEE-TRR and CEE-TPRUPS schemes in terms of SRT, which demonstrates our proposed CEE-JRUPaFJS scheme are capable of improving the security and reliability performance of IoT networks in the face of multiple eavesdroppers. Moreover, as the number of relay-user pairs increases, CEE-TPRUPS and CEE-JRUPaFJS schemes offer significant increases in SRT. Conversely, with an increasing number of eavesdroppers, the SRT of all these three schemes become worse.
Toshiki YAMADA Yoshihiro TAKAGI Chiyumi YAMADA Akira OTOMO
The optical properties of new tricyanopyrroline (TCP)-based chromophores with a benzyloxy group bound to aminobenzene donor unit were characterized by hyper-Rayleigh scattering (HRS), absorption spectrum, and 1H-NMR measurements, and the influence of the benzyloxy group on TCP-based chromophores was discussed based on the data. A positive effect of NLO properties was found in TCP-based NLO chromophores with a benzyloxy group compared with benchmark NLO chromophores without the benzyloxy group, suggesting an influence of intra-molecular hydrogen bond. Furthermore, we propose a formation of double intra-molecular hydrogen bonds in the TCP chromophore with monoene as the π-conjugation bridge and aminobenzene with a benzyloxy group as the donor unit.
Cuffless blood pressure (BP) monitors are noninvasive devices that measure systolic and diastolic BP without an inflatable cuff. They are easy to use, safe, and relatively accurate for resting-state BP measurement. Although commercially available from online retailers, BP monitors must be approved or certificated by medical regulatory bodies for clinical use. Cuffless BP monitoring devices also need to be approved; however, only the Institute of Electrical and Electronics Engineers (IEEE) certify these devices. In this paper, the principles of cuffless BP monitors are described, and the current situation regarding BP monitor standards and approval for medical use is discussed.
Hideya SO Takafumi FUJITA Kento YOSHIZAWA Maiko NAYA Takashi SHIMIZU
This paper proposes a novel radio access scheme that uses duplicated transmission via multiple frequency channels to achieve mission critical Internet of Things (IoT) services requiring highly reliable wireless communications; the interference constraints that yield the required reliability are revealed. To achieve mission critical IoT services by wireless communication, it is necessary to improve reliability in addition to satisfying the required transmission delay time. Reliability is defined as the packet arrival rate without exceeding the desired transmission delay time. Traffic of the own system and interference from the other systems using the same frequency channel such as unlicensed bands degrades the reliability. One solution is the frequency/time diversity technique. However, these techniques may not achieve the required reliability because of the time taken to achieve the correct reception. This paper proposes a novel scheme that transmits duplicate packets utilizing multiple wireless interfaces over multiple frequency channels. It also proposes a suppressed duplicate transmission (SDT) scheme, which prevents the wastage of radio resources. The proposed scheme achieves the same reliable performance as the conventional scheme but has higher tolerance against interference than retransmission. We evaluate the relationship between the reliability and the occupation time ratio where the interference occupation time ratio is defined as the usage ratio of the frequency resources occupied by the other systems. We reveal the upper bound of the interference occupation time ratio for each frequency channel, which is needed if channel selection control is to achieve the required reliability.
Kwenga ISMAEL MUNENE Nobuo FUNABIKI Hendy BRIANTORO Md. MAHBUBUR RAHMAN Fatema AKHTER Minoru KURIBAYASHI Wen-Chung KAO
Currently, the IEEE 802.11n wireless local-area network (WLAN) has been extensively deployed world-wide. For the efficient channel assignment to access-points (APs) from the limited number of partially overlapping channels (POCs) at 2.4GHz band, we have studied the throughput drop estimation model for concurrently communicating links using the channel bonding (CB). However, non-CB links should be used in dense WLANs, since the CB links often reduce the transmission capacity due to high interferences from other links. In this paper, we examine the throughput drop estimation model for concurrently communicating links without using the CB in 802.11n WLAN, and its application to the POC assignment to the APs. First, we verify the model accuracy through experiments in two network fields. The results show that the average error is 9.946% and 6.285% for the high and low interference case respectively. Then, we verify the effectiveness of the POC assignment to the APs using the model through simulations and experiments. The results show that the model improves the smallest throughput of a host by 22.195% and the total throughput of all the hosts by 22.196% on average in simulations for three large topologies, and the total throughput by 12.89% on average in experiments for two small topologies.