The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EMP(607hit)

101-120hit(607hit)

  • Microblog Retrieval Using Ensemble of Feature Sets through Supervised Feature Selection

    Abu Nowshed CHY  Md Zia ULLAH  Masaki AONO  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    793-806

    Microblog, especially twitter, has become an integral part of our daily life for searching latest news and events information. Due to the short length characteristics of tweets and frequent use of unconventional abbreviations, content-relevance based search cannot satisfy user's information need. Recent research has shown that considering temporal and contextual aspects in this regard has improved the retrieval performance significantly. In this paper, we focus on microblog retrieval, emphasizing the alleviation of the vocabulary mismatch, and the leverage of the temporal (e.g., recency and burst nature) and contextual characteristics of tweets. To address the temporal and contextual aspect of tweets, we propose new features based on query-tweet time, word embedding, and query-tweet sentiment correlation. We also introduce some popularity features to estimate the importance of a tweet. A three-stage query expansion technique is applied to improve the relevancy of tweets. Moreover, to determine the temporal and sentiment sensitivity of a query, we introduce query type determination techniques. After supervised feature selection, we apply random forest as a feature ranking method to estimate the importance of selected features. Then, we make use of ensemble of learning to rank (L2R) framework to estimate the relevance of query-tweet pair. We conducted experiments on TREC Microblog 2011 and 2012 test collections over the TREC Tweets2011 corpus. Experimental results demonstrate the effectiveness of our method over the baseline and known related works in terms of precision at 30 (P@30), mean average precision (MAP), normalized discounted cumulative gain at 30 (NDCG@30), and R-precision (R-Prec) metrics.

  • Room-Temperature Bonding of Wafers with Smooth Au Thin Films in Ambient Air Using a Surface-Activated Bonding Method Open Access

    Eiji HIGURASHI  Ken OKUMURA  Yutaka KUNIMUNE  Tadatomo SUGA  Kei HAGIWARA  

     
    INVITED PAPER

      Vol:
    E100-C No:2
      Page(s):
    156-160

    Wafers with smooth Au thin films (rms surface roughness: < 0.5nm, thickness: < 50nm) were successfully bonded in ambient air at room temperature after an Ar radio frequency plasma activation process. The room temperature bonded glass wafers without any heat treatment showed a sufficiently high die-shear strength of 47-70MPa. Transmission electron microscopy observations showed that direct bonding on the atomic scale was achieved. This surface-activated bonding method is expected to be a useful technique for future heterogeneous photonic integration.

  • A Video Salient Region Detection Framework Using Spatiotemporal Consistency Optimization

    Yunfei ZHENG  Xiongwei ZHANG  Lei BAO  Tieyong CAO  Yonggang HU  Meng SUN  

     
    PAPER-Image

      Vol:
    E100-A No:2
      Page(s):
    688-701

    Labeling a salient region accurately in video with cluttered background and complex motion condition is still a challenging work. Most existing video salient region detection models mainly extract the stimulus-driven saliency features to detect the salient region in video. They are easily influenced by the cluttered background and complex motion conditions. It may lead to incomplete or wrong detection results. In this paper, we propose a video salient region detection framework by fusing the stimulus-driven saliency features and spatiotemporal consistency cue to improve the performance of detection under these complex conditions. On one hand, stimulus-driven spatial saliency features and temporal saliency features are extracted effectively to derive the initial spatial and temporal salient region map. On the other hand, in order to make use of the spatiotemporal consistency cue, an effective spatiotemporal consistency optimization model is presented. We use this model optimize the initial spatial and temporal salient region map. Then the superpixel-level spatiotemporal salient region map is derived by optimizing the initial spatiotemporal salient region map. Finally, the pixel-level spatiotemporal salient region map is derived by solving a self-defined energy model. Experimental results on the challenging video datasets demonstrate that the proposed video salient region detection framework outperforms state-of-the-art methods.

  • Pedestrian Detection by Template Matching Using Gabor Filter Bank on 24GHz UWB Radar

    Kota IWANAGA  Keiji JIMI  Isamu MATSUNAMI  

     
    LETTER

      Vol:
    E100-A No:1
      Page(s):
    232-235

    Case studies have reported that pedestrian detection methods using vehicle radar are not complete systems because each system has specific limitations at the cost of the calculating amounts, the system complexity or the range resolution. In this letter, we proposed a novel pedestrian detection method by template matching using Gabor filter bank, which was evaluated based on the data observed by 24GHz UWB radar.

  • A 8 Phases 192MHz Crystal-Less Clock Generator with PVT Calibration

    Ting-Chou LU  Ming-Dou KER  Hsiao-Wen ZAN  Jen-Chieh LIU  Yu LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:1
      Page(s):
    275-282

    A multi-phase crystal-less clock generator (MPCLCG) with a process-voltage-temperature (PVT) calibration circuit is proposed. It operates at 192 MHz with 8 phases outputs, and is implemented as a 0.18µm CMOS process for digital power management systems. A temperature calibrated circuit is proposed to align operational frequency under process and supply voltage variations. It occupies an area of 65µm × 75µm and consumes 1.1mW with the power supply of 1.8V. Temperature coefficient (TC) is 69.5ppm/°C from 0 to 100°C, and 2-point calibration is applied to calibrate PVT variation. The measured period jitter is a 4.58-ps RMS jitter and a 34.55-ps peak-to-peak jitter (P2P jitter) at 192MHz within 12.67k-hits. At 192MHz, it shows a 1-MHz-offset phase noise of -102dBc/Hz. Phase to phase errors and duty cycle errors are less than 5.5% and 4.3%, respectively.

  • Prefiltering and Postfiltering Based on Global Motion Compensation for Improving Coding Efficiency in H.264 and HEVC Codecs

    Ho Hyeong RYU  Kwang Yeon CHOI  Byung Cheol SONG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/10/07
      Vol:
    E100-D No:1
      Page(s):
    160-165

    In this paper, we propose a filtering approach based on global motion estimation (GME) and global motion compensation (GMC) for pre- and postprocessing of video codecs. For preprocessing a video codec, group of pictures (GOP), which is a basic unit for GMC, and reference frames are first defined for an input video sequence. Next, GME and GMC are sequentially performed for every frame in each GOP. Finally, a block-based adaptive temporal filter is applied between the GMC frames before video encoding. For postprocessing a video codec at the decoder end, every decoded frame is inversely motion-compensated using the transmitted global motion information. The holes generated during inverse motion compensation can be filled with the reference frames. The experimental results show that the proposed algorithm provides higher Bjontegaard-delta peak signal-to-noise ratios (BD-PSNRs) of 0.63 and 0.57 dB on an average compared with conventional H.264 and HEVC platforms, respectively.

  • Two-Side Agreement Learning for Non-Parametric Template Matching

    Chao ZHANG  Takuya AKASHI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/10/07
      Vol:
    E100-D No:1
      Page(s):
    140-149

    We address the problem of measuring matching similarity in terms of template matching. A novel method called two-side agreement learning (TAL) is proposed which learns the implicit correlation between two sets of multi-dimensional data points. TAL learns from a matching exemplar to construct a symmetric tree-structured model. Two points from source set and target set agree to form a two-side agreement (TA) pair if each point falls into the same leaf cluster of the model. In the training stage, unsupervised weak hyper-planes of each node are learned at first. After then, tree selection based on a cost function yields final model. In the test stage, points are propagated down to leaf nodes and TA pairs are observed to quantify the similarity. Using TAL can reduce the ambiguity in defining similarity which is hard to be objectively defined and lead to more convergent results. Experiments show the effectiveness against the state-of-the-art methods qualitatively and quantitatively.

  • Lossless Coding of RGB 4:4:4 Color Video Using Linear Predictors Designed for Each Spatiotemporal Volume

    Shu TAJIMA  Yusuke KAMEDA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER-Image

      Vol:
    E99-A No:11
      Page(s):
    2016-2018

    This paper proposes an efficient lossless coding scheme for color video in RGB 4:4:4 format. For the R signal that is encoded before the other signals at each frame, we employ a block-adaptive prediction technique originally developed for monochrome video. The prediction technique used for the remaining G and B signals is extended to exploit inter-color correlations as well as inter- and intra-frame ones. In both cases, multiple predictors are adaptively selected on a block-by-block basis. For the purpose of designing a set of predictors well suited to the local properties of video signals, we also explore an appropriate setting for the spatiotemporal partitioning of a video volume.

  • Speech Analysis Method Based on Source-Filter Model Using Multivariate Empirical Mode Decomposition

    Surasak BOONKLA  Masashi UNOKI  Stanislav S. MAKHANOV  Chai WUTIWIWATCHAI  

     
    PAPER-Speech and Hearing

      Vol:
    E99-A No:10
      Page(s):
    1762-1773

    We propose a speech analysis method based on the source-filter model using multivariate empirical mode decomposition (MEMD). The proposed method takes multiple adjacent frames of a speech signal into account by combining their log spectra into multivariate signals. The multivariate signals are then decomposed into intrinsic mode functions (IMFs). The IMFs are divided into two groups using the peak of the autocorrelation function (ACF) of an IMF. The first group characterized by a spectral fine structure is used to estimate the fundamental frequency F0 by using the ACF, whereas the second group characterized by the frequency response of the vocal-tract filter is used to estimate formant frequencies by using a peak picking technique. There are two advantages of using MEMD: (i) the variation in the number of IMFs is eliminated in contrast with single-frame based empirical mode decomposition and (ii) the common information of the adjacent frames aligns in the same order of IMFs because of the common mode alignment property of MEMD. These advantages make the analysis more accurate than with other methods. As opposed to the conventional linear prediction (LP) and cepstrum methods, which rely on the LP order and cut-off frequency, respectively, the proposed method automatically separates the glottal-source and vocal-tract filter. The results showed that the proposed method exhibits the highest accuracy of F0 estimation and correctly estimates the formant frequencies of the vocal-tract filter.

  • Improved End-to-End Speech Recognition Using Adaptive Per-Dimensional Learning Rate Methods

    Xuyang WANG  Pengyuan ZHANG  Qingwei ZHAO  Jielin PAN  Yonghong YAN  

     
    LETTER-Acoustic modeling

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2550-2553

    The introduction of deep neural networks (DNNs) leads to a significant improvement of the automatic speech recognition (ASR) performance. However, the whole ASR system remains sophisticated due to the dependent on the hidden Markov model (HMM). Recently, a new end-to-end ASR framework, which utilizes recurrent neural networks (RNNs) to directly model context-independent targets with connectionist temporal classification (CTC) objective function, is proposed and achieves comparable results with the hybrid HMM/DNN system. In this paper, we investigate per-dimensional learning rate methods, ADAGRAD and ADADELTA included, to improve the recognition of the end-to-end system, based on the fact that the blank symbol used in CTC technique dominates the output and these methods give frequent features small learning rates. Experiment results show that more than 4% relative reduction of word error rate (WER) as well as 5% absolute improvement of label accuracy on the training set are achieved when using ADADELTA, and fewer epochs of training are needed.

  • Robust Non-Parametric Template Matching with Local Rigidity Constraints

    Chao ZHANG  Haitian SUN  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/06/03
      Vol:
    E99-D No:9
      Page(s):
    2332-2340

    In this paper, we address the problem of non-parametric template matching which does not assume any specific deformation models. In real-world matching scenarios, deformation between a template and a matching result usually appears to be non-rigid and non-linear. We propose a novel approach called local rigidity constraints (LRC). LRC is built based on an assumption that the local rigidity, which is referred to as structural persistence between image patches, can help the algorithm to achieve better performance. A spatial relation test is proposed to weight the rigidity between two image patches. When estimating visual similarity under an unconstrained environment, high-level similarity (e.g. with complex geometry transformations) can then be estimated by investigating the number of LRC. In the searching step, exhaustive matching is possible because of the simplicity of the algorithm. Global maximum is given out as the final matching result. To evaluate our method, we carry out a comprehensive comparison on a publicly available benchmark and show that our method can outperform the state-of-the-art method.

  • Robust Projective Template Matching

    Chao ZHANG  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/06/08
      Vol:
    E99-D No:9
      Page(s):
    2341-2350

    In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.

  • A 50-Gb/s Optical Transmitter Based on a 25-Gb/s-Class DFB-LD and a 0.18-µm SiGe BiCMOS LD Driver

    Takashi TAKEMOTO  Yasunobu MATSUOKA  Hiroki YAMASHITA  Takahiro NAKAMURA  Yong LEE  Hideo ARIMOTO  Tatemi IDO  

     
    PAPER-Optoelectronics

      Vol:
    E99-C No:9
      Page(s):
    1039-1047

    A 50-Gb/s optical transmitter, consisting of a 25-Gb/s-class lens-integrated DFB-LD (with -3-dB bandwidth of 20GHz) and a LD-driver chip based on 0.18-µm SiGe BiCMOS technology for inter and intra-rack transmissions, was developed and tested. The DFB-LD and LD driver chip are flip-chip mounted on an alumina ceramic package. To suppress inter-symbol interference due to a shortage of the DFB-LD bandwidth and signal reflection between the DFB-LD and the package, the LD driver includes a two-tap pre-emphasis circuit and a high-speed termination circuit. Operating at a data rate of 50Gb/s, the optical transmitter enhances LD bandwidth and demonstrated an eye opening with jitter margin of 0.23UI. Power efficiency of the optical transmitter at a data rate of 50Gb/s is 16.2mW/Gb/s.

  • Reducing Aging Effects on Ternary CAM

    Ing-Chao LIN  Yen-Han LEE  Sheng-Wei WANG  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:7
      Page(s):
    878-891

    Ternary content addressable memory (TCAM), which can store 0, 1, or X in its cells, is widely used to store routing tables in network routers. Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI), which increase Vth and degrade transistor switching speed, have become major reliability challenges. This study analyzes the signal probability of routing tables. The results show that many cells retain static stress and suffer significant degradation caused by NBTI and PBTI effects. The bit flipping technique is improved and proactive power gating recovery is proposed to mitigate NBTI and PBTI effects. In order to maintain the functionality of TCAM after bit flipping, a novel TCAM cell design is proposed. Simulation results show that compared to the original architecture, the bit flipping technique improves read static noise margin (SNM) for data and mask cells by 16.84% and 29.94%, respectively, and reduces search time degradation by 12.95%. The power gating technique improves read SNM for data and mask cells by 12.31% and 20.92%, respectively, and reduces search time degradation by 17.57%. When both techniques are used, read SNM for data and mask cells is improved by 17.74% and 30.53%, respectively, and search time degradation is reduced by 21.01%.

  • Large Displacement Dynamic Scene Segmentation through Multiscale Saliency Flow

    Yinhui ZHANG  Zifen HE  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1871-1876

    Most unsupervised video segmentation algorithms are difficult to handle object extraction in dynamic real-world scenes with large displacements, as foreground hypothesis is often initialized with no explicit mutual constraint on top-down spatio-temporal coherency despite that it may be imposed to the segmentation objective. To handle such situations, we propose a multiscale saliency flow (MSF) model that jointly learns both foreground and background features of multiscale salient evidences, hence allowing temporally coherent top-down information in one frame to be propagated throughout the remaining frames. In particular, the top-down evidences are detected by combining saliency signature within a certain range of higher scales of approximation coefficients in wavelet domain. Saliency flow is then estimated by Gaussian kernel correlation of non-maximal suppressed multiscale evidences, which are characterized by HOG descriptors in a high-dimensional feature space. We build the proposed MSF model in accordance with the primary object hypothesis that jointly integrates temporal consistent constraints of saliency map estimated at multiple scales into the objective. We demonstrate the effectiveness of the proposed multiscale saliency flow for segmenting dynamic real-world scenes with large displacements caused by uniform sampling of video sequences.

  • Improved Liquid-Phase Detection of Biological Targets Based on Magnetic Markers and High-Critical-Temperature Superconducting Quantum Interference Device Open Access

    Masakazu URA  Kohei NOGUCHI  Yuta UEOKA  Kota NAKAMURA  Teruyoshi SASAYAMA  Takashi YOSHIDA  Keiji ENPUKU  

     
    INVITED PAPER

      Vol:
    E99-C No:6
      Page(s):
    669-675

    In this paper, we propose improved methods of liquid-phase detection of biological targets utilizing magnetic markers and a high-critical-temperature superconducting quantum interference device (SQUID). For liquid-phase detection, the bound and unbound (free) markers are magnetically distinguished by using Brownian relaxation of free markers. Although a signal from the free markers is zero in an ideal case, it exists in a real sample on account of the aggregation and precipitation of free markers. This signal is called a blank signal, and it degrades the sensitivity of target detection. To solve this problem, we propose improved detection methods. First, we introduce a reaction field, Bre, during the binding reaction between the markers and targets. We additionally introduce a dispersion process after magnetization of the bound markers. Using these methods, we can obtain a strong signal from the bound markers without increasing the aggregation of the free markers. Next, we introduce a field-reversal method in the measurement procedure to differentiate the signal from the markers in suspension from that of the precipitated markers. Using this procedure, we can eliminate the signal from the precipitated markers. Then, we detect biotin molecules by using these methods. In an experiment, the biotins were immobilized on the surfaces of large polymer beads with diameters of 3.3 µm. They were detected with streptavidin-conjugated magnetic markers. The minimum detectable molecular number concentration was 1.8×10-19 mol/ml, which indicates the high sensitivity of the proposed method.

  • A Robust Algorithm for Extracting Signals with Temporal Structure

    Yibing LI  Wei NIE  Fang YE  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/15
      Vol:
    E99-D No:6
      Page(s):
    1671-1677

    The separation of signals with temporal structure from mixed sources is a challenging problem in signal processing. For this problem, blind source extraction (BSE) is more suitable than blind source separation (BSS) because it has lower computation cost. Nowadays many BSE algorithms can be used to extract signals with temporal structure. However, some of them are not robust because they are too dependent on the estimation precision of time delay; some others need to choose parameters before extracting, which means that arbitrariness can't be avoided. In order to solve the above problems, we propose a robust source extraction algorithm whose performance doesn't rely on the choice of parameters. The algorithm is realized by maximizing the objective function that we develop based on the non-Gaussianity and the temporal structure of source signals. Furthermore, we analyze the stability of the algorithm. Simulation results show that the algorithm can extract the desired signal from large numbers of observed sensor signals and is very robust to error in the estimation of time delay.

  • Error Propagation Analysis for Single Event Upset considering Masking Effects on Re-Convergent Path

    Go MATSUKAWA  Yuta KIMI  Shuhei YOSHIDA  Shintaro IZUMI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:6
      Page(s):
    1198-1205

    As technology nodes continue to shrink, the impact of radiation-induced soft error on processor reliability increases. Estimation of processor reliability and identification of vulnerable flip-flops requires accurate soft error rate (SER) analysis techniques. This paper presents a proposal for a soft error propagation analysis technique. We specifically examine single event upset (SEU) occurring at a flip-flop in sequential circuits. When SEUs propagate in sequential circuits, the faults can be masked temporally and logically. Conventional soft error propagation analysis techniques do not consider error convergent timing on re-convergent paths. The proposed technique can analyze soft error propagation while considering error-convergent timing on a re-convergent path by combinational analysis of temporal and logical effects. The proposed technique also considers the case in which the temporal masking is disabled with an enable signal of the erroneous flip-flop negated. Experimental results show that the proposed technique improves inaccuracy by 70.5%, on average, compared with conventional techniques using ITC 99 and ISCAS 89 benchmark circuits when the enable probability is 1/3, while the runtime overhead is only 1.7% on average.

  • A Study of the Characteristics of MEMD for Fractional Gaussian Noise

    Huan HAO  Huali WANG  Naveed UR REHMAN  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:6
      Page(s):
    1228-1232

    The dyadic filter bank property of multivariate empirical mode decomposition (MEMD) for white Gaussian noise (WGN) is well established. In order to investigate the way MEMD behaves in the presence of fractional Gaussian noise (fGn), we conduct thorough numerical experiments for MEMD for fGn inputs. It turns out that similar to WGN, MEMD follows dyadic filter bank structure for fGn inputs, which is more stable than empirical mode decomposition (EMD) regardless of the Hurst exponent. Moreover, the estimation of the Hurst exponent of fGn contaminated with different kinds of signals is also presented via MEMD in this work.

  • BotProfiler: Detecting Malware-Infected Hosts by Profiling Variability of Malicious Infrastructure Open Access

    Daiki CHIBA  Takeshi YAGI  Mitsuaki AKIYAMA  Kazufumi AOKI  Takeo HARIU  Shigeki GOTO  

     
    PAPER

      Vol:
    E99-B No:5
      Page(s):
    1012-1023

    Ever-evolving malware makes it difficult to prevent it from infecting hosts. Botnets in particular are one of the most serious threats to cyber security, since they consist of a lot of malware-infected hosts. Many countermeasures against malware infection, such as generating network-based signatures or templates, have been investigated. Such templates are designed to introduce regular expressions to detect polymorphic attacks conducted by attackers. A potential problem with such templates, however, is that they sometimes falsely regard benign communications as malicious, resulting in false positives, due to an inherent aspect of regular expressions. Since the cost of responding to malware infection is quite high, the number of false positives should be kept to a minimum. Therefore, we propose a system to generate templates that cause fewer false positives than a conventional system in order to achieve more accurate detection of malware-infected hosts. We focused on the key idea that malicious infrastructures, such as malware samples or command and control, tend to be reused instead of created from scratch. Our research verifies this idea and proposes here a new system to profile the variability of substrings in HTTP requests, which makes it possible to identify invariable keywords based on the same malicious infrastructures and to generate more accurate templates. The results of implementing our system and validating it using real traffic data indicate that it reduced false positives by up to two-thirds compared to the conventional system and even increased the detection rate of infected hosts.

101-120hit(607hit)