The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERG(867hit)

21-40hit(867hit)

  • Activating Dipolar-Energy-Based Triboelectric Power Generation Using Pyromellitic Dianhydride-4,4'-Oxydianiline Polyimide at Elevated Temperature

    Dai TAGUCHI  Takaaki MANAKA  Mitsumasa IWAMOTO  

     
    PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    202-207

    Triboelectric generators have been attracting much attention as electrical power sources in scientific communities and industries. Based on dielectric physics, two microscopic routes are available as current sources: One is charge displacement and the other is dipolar rotation. We have been investigating these routes as power sources for triboelectric generation. In other words, dipolar energy transfer process during a course of depolarization has the potentiality to be utilized as triboelectric generator. In this paper, we show that polyimide polymer film with permanent dipoles, i.e., PMDA-ODA polyimide, can provide current source capacity enhanced at elevated temperature, which is in good agreement with our idea based on dipolar energy mode of triboelectric generator. That is, permanent dipoles rotate quickly at elevated temperature, and act as an enhanced current source in the dipolar energy source model of triboelectric generator.

  • Evaluation of Performance and Power Consumption on Supercomputer Fugaku Using SPEC HPC Benchmarks

    Yuetsu KODAMA  Masaaki KONDO  Mitsuhisa SATO  

     
    PAPER

      Pubricized:
    2022/12/12
      Vol:
    E106-C No:6
      Page(s):
    303-311

    The supercomputer, “Fugaku”, which ranked number one in multiple supercomputing lists, including the Top500 in June 2020, has various power control features, such as (1) an eco mode that utilizes only one of two floating-point pipelines while decreasing the power supply to the chip; (2) a boost mode that increases clock frequency; and (3) a core retention feature that turns unused cores to the low-power state. By orchestrating these power-performance features while considering the characteristics of running applications, we can potentially gain even better system-level energy efficiency. In this paper, we report on the performance and power consumption of Fugaku using SPEC HPC benchmarks. Consequently, we confirmed that it is possible to reduce the energy by about 17% while improving the performance by about 2% from the normal mode by combining boost mode and eco mode.

  • Thermal-Comfort Aware Online Co-Scheduling Framework for HVAC, Battery Systems, and Appliances in Smart Buildings

    Daichi WATARI  Ittetsu TANIGUCHI  Francky CATTHOOR  Charalampos MARANTOS  Kostas SIOZIOS  Elham SHIRAZI  Dimitrios SOUDRIS  Takao ONOYE  

     
    INVITED PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    698-706

    Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.

  • Enhanced Full Attention Generative Adversarial Networks

    KaiXu CHEN  Satoshi YAMANE  

     
    LETTER-Core Methods

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:5
      Page(s):
    813-817

    In this paper, we propose improved Generative Adversarial Networks with attention module in Generator, which can enhance the effectiveness of Generator. Furthermore, recent work has shown that Generator conditioning affects GAN performance. Leveraging this insight, we explored the effect of different normalization (spectral normalization, instance normalization) on Generator and Discriminator. Moreover, an enhanced loss function called Wasserstein Divergence distance, can alleviate the problem of difficult to train module in practice.

  • Selective Learning of Human Pose Estimation Based on Multi-Scale Convergence Network

    Wenkai LIU  Cuizhu QIN  Menglong WU  Wenle BAI  Hongxia DONG  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2023/02/15
      Vol:
    E106-D No:5
      Page(s):
    1081-1084

    Pose estimation is a research hot spot in computer vision tasks and the key to computer perception of human activities. The core concept of human pose estimation involves describing the motion of the human body through major joint points. Large receptive fields and rich spatial information facilitate the keypoint localization task, and how to capture features on a larger scale and reintegrate them into the feature space is a challenge for pose estimation. To address this problem, we propose a multi-scale convergence network (MSCNet) with a large receptive field and rich spatial information. The structure of the MSCNet is based on an hourglass network that captures information at different scales to present a consistent understanding of the whole body. The multi-scale receptive field (MSRF) units provide a large receptive field to obtain rich contextual information, which is then selectively enhanced or suppressed by the Squeeze-Excitation (SE) attention mechanism to flexibly perform the pose estimation task. Experimental results show that MSCNet scores 73.1% AP on the COCO dataset, an 8.8% improvement compared to the mainstream CMUPose method. Compared to the advanced CPN, the MSCNet has 68.2% of the computational complexity and only 55.4% of the number of parameters.

  • Automorphism Shuffles for Graphs and Hypergraphs and Its Applications

    Kazumasa SHINAGAWA  Kengo MIYAMOTO  

     
    PAPER

      Pubricized:
    2022/09/12
      Vol:
    E106-A No:3
      Page(s):
    306-314

    In card-based cryptography, a deck of physical cards is used to achieve secure computation. A shuffle, which randomly permutes a card-sequence along with some probability distribution, ensures the security of a card-based protocol. The authors proposed a new class of shuffles called graph shuffles, which randomly permutes a card-sequence by an automorphism of a directed graph (New Generation Computing 2022). For a directed graph G with n vertices and m edges, such a shuffle could be implemented with pile-scramble shuffles with 2(n + m) cards. In this paper, we study graph shuffles and give an implementation, an application, and a slight generalization. First, we propose a new protocol for graph shuffles with 2n + m cards. Second, as a new application of graph shuffles, we show that any cyclic group shuffle, which is a shuffle over a cyclic group, is a graph shuffle associated with some graph. Third, we define a hypergraph shuffle, which is a shuffle by an automorphism of a hypergraph, and show that any hypergraph shuffle can also be implemented with pile-scramble shuffles.

  • mPoW: How to Make Proof of Work Meaningful

    Takaki ASANUMA  Takanori ISOBE  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    333-340

    Proof of Work (PoW), which is a consensus algorithm for blockchain, entails a large number of meaningless hash calculations and wastage of electric power and computational resources. In 2021, it is estimated that the PoW of Bitcoin consumes as much electricity as Pakistan's annual power consumption (91TWh). This is a serious problem against sustainable development goals. To solve this problem, this study proposes Meaningful-PoW (mPoW), which involves a meaningful calculation, namely the application of a genetic algorithm (GA) to PoW. Specifically, by using the intermediate values that are periodically generated through GA calculations as an input to the Hashcash used in Bitcoin, it is possible to make this scheme a meaningful calculation (GA optimization problem) while maintaining the properties required for PoW. Furthermore, by applying a device-binding technology, mPoW can be ASIC resistant without the requirement of a large memory. Thus, we show that mPoW can reduce the excessive consumption of both power and computational resources.

  • Asymptotic Evaluation of Classification in the Presence of Label Noise

    Goki YASUDA  Tota SUKO  Manabu KOBAYASHI  Toshiyasu MATSUSHIMA  

     
    PAPER-Learning

      Pubricized:
    2022/08/26
      Vol:
    E106-A No:3
      Page(s):
    422-430

    In a practical classification problem, there are cases where incorrect labels are included in training data due to label noise. We introduce a classification method in the presence of label noise that idealizes a classification method based on the expectation-maximization (EM) algorithm, and evaluate its performance theoretically. Its performance is asymptotically evaluated by assessing the risk function defined as the Kullback-Leibler divergence between predictive distribution and true distribution. The result of this performance evaluation enables a theoretical evaluation of the most successful performance that the EM-based classification method may achieve.

  • Approximation-Based System Implementation for Real-Time Minimum Energy Point Tracking over a Wide Operating Performance Region

    Shoya SONODA  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2022/10/07
      Vol:
    E106-A No:3
      Page(s):
    542-550

    This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). This paper proposes an approximation-based implementation method for an MEP tracking system over a wide voltage region. This paper focuses on the MEP characteristics that the energy loss is sufficiently small even though the voltage point changes near the MEP. For example, the energy loss is less than 5% even though the estimated MEP differs by a few tens of millivolts in comparison with the actual MEP. Therefore, the complexity for determining the MEP is relaxed by approximating complex operations such as the logarithmic or the exponential functions in the MEP tracking algorithm, which leads to hardware-/software-efficient implementation. When the MEP tracking algorithm is implemented in software, the MEP estimation time is reduced from 1ms to 13µs by the proposed approximation. When implemented in hardware, the proposed method can reduce the area of an MEP estimation circuit to a quarter. Measurement results of a 32-bit RISC-V processor fabricated in a 65-nm SOTB process technology show that the energy loss introduced by the proposed approximation is less than 2% in comparison with the MEP operation. Furthermore, we show that the MEP can be tracked within about 45 microseconds by the proposed MEP tracking system.

  • An Accuracy Reconfigurable Vector Accelerator based on Approximate Logarithmic Multipliers for Energy-Efficient Computing

    Lingxiao HOU  Yutaka MASUDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2022/09/02
      Vol:
    E106-A No:3
      Page(s):
    532-541

    The approximate logarithmic multiplier proposed by Mitchell provides an efficient alternative for processing dense multiplication or multiply-accumulate operations in applications such as image processing and real-time robotics. It offers the advantages of small area, high energy efficiency and is suitable for applications that do not necessarily achieve high accuracy. However, its maximum error of 11.1% makes it challenging to deploy in applications requiring relatively high accuracy. This paper proposes a novel operand decomposition method (OD) that decomposes one multiplication into the sum of multiple approximate logarithmic multiplications to widely reduce Mitchell multiplier errors while taking full advantage of its area savings. Based on the proposed OD method, this paper also proposes an accuracy reconfigurable multiply-accumulate (MAC) unit that provides multiple reconfigurable accuracies with high parallelism. Compared to a MAC unit consisting of accurate multipliers, the area is significantly reduced to less than half, improving the hardware parallelism while satisfying the required accuracy for various scenarios. The experimental results show the excellent applicability of our proposed MAC unit in image smoothing and robot localization and mapping application. We have also designed a prototype processor that integrates the minimum functionality of this MAC unit as a vector accelerator and have implemented a software-level accuracy reconfiguration in the form of an instruction set extension. We experimentally confirmed the correct operation of the proposed vector accelerator, which provides the different degrees of accuracy and parallelism at the software level.

  • RT-libSGM: FPGA-Oriented Real-Time Stereo Matching System with High Scalability

    Kaijie WEI  Yuki KUNO  Masatoshi ARAI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:3
      Page(s):
    337-348

    Stereo depth estimation has become an attractive topic in the computer vision field. Although various algorithms strive to optimize the speed and the precision of estimation, the energy cost of a system is also an essential metric for an embedded system. Among these various algorithms, Semi-Global Matching (SGM) has been a popular choice for some real-world applications because of its accuracy-and-speed balance. However, its power consumption makes it difficult to be applied to an embedded system. Thus, we propose a robust stereo matching system, RT-libSGM, working on the Xilinx Field-Programmable Gate Array (FPGA) platforms. The dedicated design of each module optimizes the speed of the entire system while ensuring the flexibility of the system structure. Through an evaluation on a Zynq FPGA board called M-KUBOS, RT-libSGM achieves state-of-the-art performance with lower power consumption. Compared with the benchmark design (libSGM) working on the Tegra X2 GPU, RT-libSGM runs more than 2× faster at a much lower energy cost.

  • Energy Efficiency Optimization for MISO-NOMA SWIPT System with Heterogeneous QoS Requirements

    Feng LIU  Xianlong CHENG  Conggai LI  Yanli XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/08/18
      Vol:
    E106-A No:2
      Page(s):
    159-163

    This letter solves the energy efficiency optimization problem for the simultaneous wireless information and power transfer (SWIPT) systems with non-orthogonal multiple access (NOMA), multiple input single output (MISO) and power-splitting structures, where each user may have different individual quality of service (QoS) requirements about information and energy. Nonlinear energy harvesting model is used. Alternate optimization approach is adopted to find the solution, which shows a fast convergence behavior. Simulation results show the proposed scheme has higher energy efficiency than existing dual-layer iteration and throughput maximization methods.

  • Wireless-Powered Relays Assisted Batteryless IoT Networks Empowered by Energy Beamforming

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:2
      Page(s):
    164-168

    In this letter, we propose an energy beamforming empowered relaying scheme for a batteryless IoT network, where wireless-powered relays are deployed between the hybrid access point (HAP) and batteryless IoT devices to assist the uplink information transmission from the devices to the HAP. In particular, the HAP first exploits energy beamforming to efficiently transmit radio frequency (RF) signals to transfer energy to the relays and as the incident signals to enable the information backscattering of batteryless IoT devices. Then, each relay uses the harvested energy to forward the decoded signals from its corresponding batteryless IoT device to the HAP, where the maximum-ratio combing is used for further performance improvement. To maximize the network sum-rate, the joint optimization of energy beamforming vectors at the HAP, network time scheduling, power allocation at the relays, and relection coefficient at the users is investigated. As the formulated problem is non-convex, we propose an alternating optimization algorithm with the variable substitution and semi-definite relaxation (SDR) techniques to solve it efficiently. Specifically, we prove that the obtained energy beamforming matrices are always rank-one. Numerical results show that compared to the benchmark schemes, the proposed scheme can achieve a significant sum-rate gain.

  • Budget Allocation for Incentivizing Mobile Users for Crowdsensing Platform

    Cheng ZHANG  Noriaki KAMIYAMA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1342-1352

    With the popularity of smart devices, mobile crowdsensing, in which the crowdsensing platform gathers useful data from users of smart devices, e.g., smartphones, has become a prevalent paradigm. Various incentive mechanisms have been extensively adopted for the crowdsensing platform to incentivize users of smart devices to offer sensing data. Existing works have concentrated on rewarding smart-device users for their short term effort to provide data without considering the long-term factors of smart-device users and the quality of data. Our previous work has considered the quality of data of smart-device users by incorporating the long-term reputation of smart-device users. However, our previous work only considered a quality maximization problem with budget constraints on one location. In this paper, multiple locations are considered. Stackelberg game is utilized to solve a two-stage optimization problem. In the first stage, the crowdsensing platform allocates the budget to different locations and sets price as incentives for users to maximize the total data quality. In the second stage, the users make efforts to provide data to maximize its utility. Extensive numerical simulations are conducted to evaluate proposed algorithm.

  • Experimental Study on Synchronization of Van der Pol Oscillator Circuit by Noise Sounds

    Taiki HAYASHI  Kazuyoshi ISHIMURA  Isao T. TOKUDA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/05/16
      Vol:
    E105-A No:11
      Page(s):
    1486-1492

    Towards realization of a noise-induced synchronization in a natural environment, an experimental study is carried out using the Van der Pol oscillator circuit. We focus on acoustic sounds as a potential source of noise that may exist in nature. To mimic such a natural environment, white noise sounds were generated from a loud speaker and recorded into microphone signals. These signals were then injected into the oscillator circuits. We show that the oscillator circuits spontaneously give rise to synchronized dynamics when the microphone signals are highly correlated with each other. As the correlation among the input microphone signals is decreased, the level of synchrony is lowered monotonously, implying that the input correlation is the key determinant for the noise-induced synchronization. Our study provides an experimental basis for synchronizing clocks in distributed sensor networks as well as other engineering devices in natural environment.

  • Block-Based Scheduling Algorithm for Layered Decoding of Block LDPC Codes

    Sangjoon PARK  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/28
      Vol:
    E105-B No:11
      Page(s):
    1408-1413

    This paper proposes an efficient scheduling algorithm for the layered decoding of block low-density parity-check (LDPC) codes. To efficiently configure check node-based scheduling groups, the proposed algorithm utilizes the base matrix of the block LDPC code for a block-by-block scheduling group configuration; i.e., the proposed algorithm generates a scheduling group of check nodes, satisfying the weight condition of the layered decoding, which is performed in block units (including several check nodes). Therefore, unlike the conventional scheduling algorithms performed in node units, the proposed algorithm can efficiently generate scheduling groups for layered decoding at low computational complexity and memory requirements. In addition, to accelerate the decoding convergence speed, check nodes are allocated in each scheduling group such that messages from check nodes up to the current group are delivered as evenly as possible to bit nodes. Simulation results confirm that the proposed algorithm can accelerate decoding convergence compared to other block-based scheduling algorithms for layered decoding of block LDPC codes.

  • Secondary Ripple Suppression Strategy for a Single-Phase PWM Rectifier Based on Constant Frequency Current Predictive Control

    Hailan ZHOU  Longyun KANG  Xinwei DUAN  Ming ZHAO  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    667-674

    In the conventional single-phase PWM rectifier, the sinusoidal fluctuating current and voltage on the grid side will generate power ripple with a doubled grid frequency which leads to a secondary ripple in the DC output voltage, and the switching frequency of the conventional model predictive control strategy is not fixed. In order to solve the above two problems, a control strategy for suppressing the secondary ripple based on the three-vector fixed-frequency model predictive current control is proposed. Taking the capacitive energy storage type single-phase PWM rectifier as the research object, the principle of its active filtering is analyzed and a model predictive control strategy is proposed. Simulation and experimental results show that the proposed strategy can significantly reduce the secondary ripple of the DC output voltage, reduce the harmonic content of the input current, and achieve a constant switching frequency.

  • Blockchain-Based Optimization of Distributed Energy Management Systems with Real-Time Demand Response

    Daiki OGAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER-Systems and Control

      Pubricized:
    2022/05/12
      Vol:
    E105-A No:11
      Page(s):
    1478-1485

    Design of distributed energy management systems composed of several agents such as factories and buildings is important for realizing smart cities. In addition, demand response for saving the power consumption is also important. In this paper, we propose a design method of distributed energy management systems with real-time demand response, in which both electrical energy and thermal energy are considered. Here, we use ADMM (Alternating Direction Method of Multipliers), which is well known as one of the powerful methods in distributed optimization. In the proposed method, demand response is performed in real-time, based on the difference between the planned demand and the actual value. Furthermore, utilizing a blockchain is also discussed. The effectiveness of the proposed method is presented by a numerical example. The importance of introducing a blockchain is pointed out by presenting the adverse effect of tampering the actual value.

  • Convergence of the Hybrid Implicit-Explicit Single-Field FDTD Method Based on the Wave Equation of Electric Field

    Kazuhiro FUJITA  

     
    BRIEF PAPER

      Pubricized:
    2022/03/24
      Vol:
    E105-C No:11
      Page(s):
    696-699

    The hybrid implicit-explicit single-field finite-difference time-domain (HIE-SF-FDTD) method based on the wave equation of electric field is reformulated in a concise matrix-vector form. The global approximation error of the scheme is discussed theoretically. The second-order convergence of the HIE-SF-FDTD is numerically verified.

  • Energy-Efficient KBP: Kernel Enhancements for Low-Latency and Energy-Efficient Networking Open Access

    Kei FUJIMOTO  Ko NATORI  Masashi KANEKO  Akinori SHIRAGA  

     
    PAPER-Network

      Pubricized:
    2022/03/14
      Vol:
    E105-B No:9
      Page(s):
    1039-1052

    Real-time applications are becoming more and more popular, and due to the demand for more compact and portable user devices, offloading terminal processes to edge servers is being considered. Moreover, it is necessary to process packets with low latency on edge servers, which are often virtualized for operability. When trying to achieve low-latency networking, the increase in server power consumption due to performance tuning and busy polling for fast packet receiving becomes a problem. Thus, we design and implement a low-latency and energy-efficient networking system, energy-efficient kernel busy poll (EE-KBP), which meets four requirements: (A) low latency in the order of microseconds for packet forwarding in a virtual server, (B) lower power consumption than existing solutions, (C) no need for application modification, and (D) no need for software redevelopment with each kernel security update. EE-KBP sets a polling thread in a Linux kernel that receives packets with low latency in polling mode while packets are arriving, and when no packets are arriving, it sleeps and lowers the CPU operating frequency. Evaluations indicate that EE-KBP achieves microsecond-order low-latency networking under most traffic conditions, and 1.4× to 3.1× higher throughput with lower power consumption than NAPI used in a Linux kernel.

21-40hit(867hit)