The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

761-780hit(5768hit)

  • On the Use of Information and Infrastructure Technologies for the Smart City Research in Europe: A Survey Open Access

    Juan Ramón SANTANA  Martino MAGGIO  Roberto DI BERNARDO  Pablo SOTRES  Luis SÁNCHEZ  Luis MUÑOZ  

     
    INVITED SURVEY PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    2-15

    The Smart City paradigm has become one of the most important research topics around the globe. Particularly in Europe, it is considered as a solution for the unstoppable increase of high density urban environments and the European Commission has included the Smart City research as one of the key objectives for the FP7 (Seventh Framework Program) and H2020 (Horizon 2020) research initiatives. As a result, a considerable amount of quality research, with particular emphasis on information and communication technologies, has been produced. In this paper, we review the current efforts dedicated in Europe to this research topic. Particular attention is paid in the review to the platforms and infrastructure technologies adopted to introduce the Internet of Things into the city, taking into account the constraints and harshness of urban environments. Furthermore, this paper also considers the efforts in the experimental perspective, which includes the review of existing Smart City testbeds, part of wider European initiatives such as FIRE (Future Internet Research and Experimentation) and FIWARE. Last but not least, the main efforts in providing interoperability between the different experimental facilities are also presented.

  • Simplified Vehicle Vibration Modeling for Image Sensor Communication

    Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Toshiaki FUJII  Shintaro ARAI  Tomohiro YENDO  Koji KAMAKURA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    176-184

    Image sensor communication (ISC), derived from visible light communication (VLC) is an attractive solution for outdoor mobile environments, particularly for intelligent transport systems (ITS). In ITS-ISC, tracking a transmitter in the image plane is critical issue since vehicle vibrations make it difficult to selsct the correct pixels for data reception. Our goal in this study is to develop a precise tracking method. To accomplish this, vehicle vibration modeling and its parameters estimation, i.e., represetative frequencies and their amplitudes for inherent vehicle vibration, and the variance of the Gaussian random process represnting road surface irregularity, are required. In this paper, we measured actual vehicle vibration in a driving situation and determined parameters based on the frequency characteristics. Then, we demonstrate that vehicle vibration that induces transmitter displacement in an image plane can be modeled by only Gaussian random processes that represent road surface irregularity when a high frame rate (e.g., 1000fps) image sensor is used as an ISC receiver. The simplified vehicle vibration model and its parameters are evaluated by numerical analysis and experimental measurement and obtained result shows that the proposed model can reproduce the characteristics of the transmitter displacement sufficiently.

  • Design and Measurements of Two-Gain-Mode GaAs-BiFET MMIC Power Amplifier Modules with Small Phase Discontinuity for WCDMA Data Communications

    Kazuya YAMAMOTO  Miyo MIYASHITA  Kenji MUKAI  Shigeru FUJIWARA  Satoshi SUZUKI  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:1
      Page(s):
    65-77

    This paper describes the design and measurements of two-gain-mode MMIC power amplifier modules (PAMs) for Band 1 and Band 5 WCDMA data communications. The PAMs are based on the two-stage single-chain amplifier topology with an L-shaped FET step attenuator (ATT) placed at the interstage, featuring not only high-efficiency operation but also both a small phase discontinuity and a small input return loss variation between the two gain modes: a high-gain mode (0-dB thru state for the ATT) and a low-gain mode (14-dB attenuation state for the ATT). The PAMs are assembled on a 3 mm × 3 mm FR-4 laminate together with several surface mount devices, and a high-directivity, 20-dB bilayer-type directional coupler is integrated on the laminate for accurate forward-power monitoring even under a 2.5:1-VSWR load mismatching condition. To validate the design and analysis for the PAMs using the L-shaped ATT, two PAM products — a Band 1 PAM and a Band 5 PAM — were fabricated using our in-house GaAs-BiFET process. The main RF measurements under the condition of a WCDMA (R99) modulated signal and a 3.4-V supply voltage are as follows. The Band 1 PAM can deliver a power-added efficiency (PAE) as high as 46% at an output power (Pout) of 28.25 dBm while maintaining a ±5-MHz-offset adjacent channel power ratio (ACLR1) of approximately -40 dBc or less and a small phase discontinuity of less than 5°. The Band 5 PAM can also deliver a high PAE of 46% at the same Pout and ACLR1 levels with small phase discontinuity of less than 4°. This small discontinuity is due to the phase-shift compensation capacitance embedded in the ATT. The measured input return loss is well maintained at better than 10 dB at the two modes. In addition, careful coupler design achieves a small detection error of less than 0.5 dB even under a 2.5:1-VSWR load mismatching condition.

  • Hash-Chain Improvement of Key Predistribution Schemes Based on Transversal Designs

    Qiang GAO  Wenping MA  Wei LUO  Feifei ZHAO  

     
    LETTER

      Vol:
    E101-A No:1
      Page(s):
    157-159

    Key predistribution schemes (KPSs) have played an important role in security of wireless sensor networks (WSNs). Due to comprehensive and simple structures, various types of combinatorial designs are used to construct KPSs. In general, compared to random KPSs, combinatorial KPSs have higher local connectivity but lower resilience against a node capture attack. In this paper, we apply two methods based on hash chains on KPSs based on transversal designs (TDs) to improve the resilience and the expressions for the metrics of the resulting schemes are derived.

  • Availability of Reference Sound Sources for Qualification of Hemi-Anechoic Rooms Based on Deviation of Sound Pressure Level from Inverse Square Law

    Keisuke YAMADA  Hironobu TAKAHASHI  Ryuzo HORIUCHI  

     
    PAPER-Engineering Acoustics

      Vol:
    E101-A No:1
      Page(s):
    211-218

    The sound power level is a physical quantity indispensable for evaluating the amount of sound energy radiated from electrical and mechanical apparatuses. The precise determination of the sound power level requires the qualification of the measurement environment, such as a hemi-anechoic room, by estimating the deviation of the sound pressure level from the inverse-square law. In this respect, Annex A of ISO 3745 specifies the procedure for room qualification and defines a tolerance limit for the directivity of the sound source, which is used for the qualification. However, it is impractical to prepare a special loudspeaker only for room qualification. Thus, we developed a simulation method to investigate the influence of the sound source directivity on the measured deviation of the sound pressure level from the inverse-square law by introducing a quantitative index for the influence of the directivity. In this study, type 4202 reference sound source by Brüel & Kjær was used as a directional sound source because it has been widely used as a reference standard for the measurement of sound power levels. We experimentally obtained the directivity of the sound source by measuring the sound pressure level over the measurement surface. Moreover, the proposed method was applied to the qualification of several hemi-anechoic rooms, and we discussed the availability of a directional sound source for the process. Analytical results showed that available reference sound sources may be used for the evaluation of hemi-anechoic rooms depending on the sound energy absorption coefficient of the inner wall, the directionality of the microphone traverse, and the size of the space to be qualified. In other words, the results revealed that a reference sound source that is once quantified by the proposed method can be used for qualifying hemi-anechoic rooms.

  • Scalable Distributed Video Coding for Wireless Video Sensor Networks

    Hong YANG  Linbo QING  Xiaohai HE  Shuhua XIONG  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    20-27

    Wireless video sensor networks address problems, such as low power consumption of sensor nodes, low computing capacity of nodes, and unstable channel bandwidth. To transmit video of distributed video coding in wireless video sensor networks, we propose an efficient scalable distributed video coding scheme. In this scheme, the scalable Wyner-Ziv frame is based on transmission of different wavelet information, while the Key frame is based on transmission of different residual information. A successive refinement of side information for the Wyner-Ziv and Key frames are proposed in this scheme. Test results show that both the Wyner-Ziv and Key frames have four layers in quality and bit-rate scalable, but no increase in complexity of the encoder.

  • Black-Box Separations on Fiat-Shamir-Type Signatures in the Non-Programmable Random Oracle Model

    Masayuki FUKUMITSU  Shingo HASEGAWA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    77-87

    In recent years, Fischlin and Fleischhacker showed the impossibility of proving the security of specific types of FS-type signatures, the signatures constructed by the Fiat-Shamir transformation, via a single-instance reduction in the non-programmable random oracle model (NPROM, for short). In this paper, we pose a question whether or not the impossibility of proving the security of any FS-type signature can be shown in the NPROM. For this question, we show that each FS-type signature cannot be proven to be secure via a key-preserving reduction in the NPROM from the security against the impersonation of the underlying identification scheme under the passive attack, as long as the identification scheme is secure against the impersonation under the active attack. We also show the security incompatibility between the security of some FS-type signatures in the NPROM via a single-instance key-preserving reduction and the underlying cryptographic assumptions. By applying this result to the Schnorr signature, one can prove the incompatibility between the security of the Schnorr signature in this situation and the discrete logarithm assumption, whereas Fischlin and Fleischhacker showed that such an incompatibility cannot be proven via a non-key-preserving reduction.

  • Proposals and Implementation of High Band IR-UWB for Increasing Propagation Distance for Indoor Positioning

    Huan-Bang LI  Ryu MIURA  Hisashi NISHIKAWA  Toshinori KAGAWA  Fumihide KOJIMA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    185-194

    Among various indoor positioning technologies, impulse-radio UWB is a promising technique to provide indoor positioning and tracking services with high precision. Because UWB regulations turned to imposing restrictions on UWB low band, UWB high band becomes attractive for enabling simple and low cost implementation. However, UWB high band endures much larger propagation loss than UWB low band. In this paper, we propose two separated methods to compensate the deficiency of high band in propagation. With the first method, we bundle several IR-UWB modules to increase the average transmission power, while an adaptive detection threshold is introduced at the receiver to raise receiving sensitivity with the second method. We respectively implement each of these two proposed methods and evaluate their performance through measurements in laboratory. The results show that each of them achieves about 7dB gains in signal power. Furthermore, positioning performance of these two proposed methods are evaluated and compared through field measurements in an indoor sports land.

  • Generating Pairing-Friendly Elliptic Curves Using Parameterized Families

    Meng ZHANG  Maozhi XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:1
      Page(s):
    279-282

    A new method is proposed for the construction of pairing-friendly elliptic curves. For any fixed embedding degree, it can transform the problem to solving equation systems instead of exhaustive searching, thus it's more targeted and efficient. Via this method, we obtain various families including complete families, complete families with variable discriminant and sparse families. Specifically, we generate a complete family with important application prospects which has never been given before as far as we know.

  • A Two-Stage Scheduling to Improve Capacity for Inter-Concentrator Communication in Hierarchical Wireless Sensor Networks

    Yuriko YOSHINO  Masafumi HASHIMOTO  Naoki WAKAMIYA  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    58-69

    In this paper, we focus on two-layer wireless sensor networks (WSNs) that consist of sensor-concentrator and inter-concentrator networks. In order to collect as much data as possible from a wide area, improving of network capacity is essential because data collection applications often require to gather data within a limited period, i.e., acceptable collection delay. Therefore, we propose a two-stage scheduling method for inter-concentrator networks. The proposed method first strictly schedules time slots of links with heavy interference and congestion by exploiting the combination metric of interference and traffic demand. After that, it simply schedules time slots of the remaining sinks to mitigate complexity. Simulation-based evaluations show our proposal offers much larger capacity than conventional scheduling algorithms. In particular, our proposal improves up to 70% capacity compared with the conventional methods in situations where the proportion of one- and two-hop links is small.

  • Relay-Assisted Load Balancing Scheme Based on Practical Throughput Estimation

    Won-Tae YU  Jeongsik CHOI  Woong-Hee LEE  Seong-Cheol KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/03
      Vol:
    E101-B No:1
      Page(s):
    242-252

    In cellular network environments, where users are not evenly distributed across cells, overloaded base stations handling many users have difficulties in providing effective and fair services with their limited resources. Additionally, users at the cell edge may suffer from the potential problems resulting from low signal-to-interference ratio owing to the incessant interference from adjacent cells. In this paper, we propose a relay-assisted load balancing scheme to resolve these traffic imbalance. The proposed scheme can improve the performance of the overall network by utilizing relay stations to divert heavy traffic to other cells, and by adopting a partial frequency-reuse scheme to mitigate inter-cell interference. Each user and relay station calculates its own utility influence in the neighboring candidates for reassociation and decides whether to stay or move to another cell presenting the maximum total network utility increment. Simulation results show that the proposed scheme improves the overall network fairness to users by improving the performance of cell boundary users without degrading the total network throughput. We achieve a system performance gain of 16 ∼ 35% when compared with conventional schemes, while ensuring fairness among users.

  • An Ontological Model for Fire Emergency Situations

    Kattiuscia BITENCOURT  Frederico ARAÚJO DURÃO  Manoel MENDONÇA  Lassion LAIQUE BOMFIM DE SOUZA SANTANA  

     
    PAPER

      Pubricized:
    2017/09/15
      Vol:
    E101-D No:1
      Page(s):
    108-115

    The emergency response process is quite complex since there is a wide variety of elements to be evaluated for taking decisions. Uncertainties generated by subjectivity and imprecision affect the safety and effectiveness of actions. The aim of this paper is to develop an onto-logy for emergency response protocols, in particular, to fires in buildings. This developed ontology supports the knowledge sharing, evaluation and review of the protocols used, contributing to the tactical and strategic planning of organizations. The construction of the ontology was based on the methodology Methontology. The domain specification and conceptualization were based in qualitative research, in which were evaluated 131 terms with definitions, of which 85 were approved by specialists. From there, in the Protégé tool, the domain's taxonomy and the axioms were created. The specialists validated the ontology using the assessment by human approach (taxonomy, application and structure). Thus, a sustainable ontology model to the rescue tactical phase was ensured.

  • An Efficient Acoustic Distance Rendering Algorithm for Proximity Control in Virtual Reality Systems

    Yonghyun BAEK  Tegyu LEE  Young-cheol PARK  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    3054-3060

    In this letter, we propose an acoustic distance rendering (ADR) algorithm that can efficiently create the proximity effect in virtual reality (VR) systems. By observing the variation of acoustic cues caused by the movement of the sound source in the near field, we develop a model that can closely approximates the near-field transfer function (NFTF). The developed model is used to efficiently compensate for the near-field effect on the head related transfer function (HRTF). The proposed algorithm is implemented and tested in the form of an audio plugin for a VR platform and the test results confirm the efficiency of the proposed algorithm.

  • Error-Trapping Decoding for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2578-2584

    Symbol-pair read channels output overlapping pairs of symbols in storage applications. Pair distance and pair error are used in the channels. In this paper, we discuss error-trapping decoding for cyclic codes over symbol-pair read channels. By putting some restrictions on the correctable pair error patterns, we propose a novel error-trapping decoding algorithm over the channels and show a circuitry for implementing the decoding algorithm. In addition, we discuss how to modify the restrictions on the correctable pair error patterns.

  • A New Energy Efficient Clustering Algorithm Based on Routing Spanning Tree for Wireless Sensor Network

    Yating GAO  Guixia KANG  Jianming CHENG  Ningbo ZHANG  

     
    PAPER-Network

      Pubricized:
    2017/05/26
      Vol:
    E100-B No:12
      Page(s):
    2110-2120

    Wireless sensor networks usually deploy sensor nodes with limited energy resources in unattended environments so that people have difficulty in replacing or recharging the depleted devices. In order to balance the energy dissipation and prolong the network lifetime, this paper proposes a routing spanning tree-based clustering algorithm (RSTCA) which uses routing spanning tree to analyze clustering. In this study, the proposed scheme consists of three phases: setup phase, cluster head (CH) selection phase and steady phase. In the setup phase, several clusters are formed by adopting the K-means algorithm to balance network load on the basis of geographic location, which solves the randomness problem in traditional distributed clustering algorithm. Meanwhile, a conditional inter-cluster data traffic routing strategy is created to simplify the networks into subsystems. For the CH selection phase, a novel CH selection method, where CH is selected by a probability based on the residual energy of each node and its estimated next-time energy consumption as a function of distance, is formulated for optimizing the energy dissipation among the nodes in the same cluster. In the steady phase, an effective modification that counters the boundary node problem by adjusting the data traffic routing is designed. Additionally, by the simulation, the construction procedure of routing spanning tree (RST) and the effect of the three phases are presented. Finally, a comparison is made between the RSTCA and the current distributed clustering protocols such as LEACH and LEACH-DT. The results show that RSTCA outperforms other protocols in terms of network lifetime, energy dissipation and coverage ratio.

  • Automatic Design of Operational Amplifier Utilizing both Equation-Based Method and Genetic Algorithm

    Kento SUZUKI  Nobukazu TAKAI  Yoshiki SUGAWARA  Masato KATO  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2750-2757

    Automatic design of analog circuits using a programmed algorithm is in great demand because optimal analog circuit design in a short time is required due to the limited development time. Although an automatic design using equation-based method can design simple circuits fast and accurately, it cannot solve complex circuits. On the other hand, an automatic design using optimization algorithm such as Ant Colony Optimization, Genetic Algorithm, and so on, can design complex circuits. However, because these algorithms are based on the stochastic optimization technique and determine the circuit parameters at random, a lot of circuits which do not operate in principle are generated and simulated to find the circuit which meets specifications. In this paper, to reduce the search space and the redundant simulations, automatic design using both equation-based method and a genetic algorithm is proposed. The proposed method optimizes the bias circuit blocks using the equation-based method and signal processing blocks using Genetic Algorithm. Simulation results indicate that the evaluation value which considers the trade-off of the circuit specification is larger than the conventional method and the proposed method can design 1.4 times more circuits which satisfy the minimum requirements than the conventional method.

  • Design of New Spatial Modulation Scheme Based on Quaternary Quasi-Orthogonal Sequences

    Hojun KIM  Yulong SHANG  Taejin JUNG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/02
      Vol:
    E100-B No:12
      Page(s):
    2129-2138

    In this paper, we propose a new spatial modulation (SM) scheme based on quaternary quasi-orthogonal sequences (Q-QOSs), referred to as Q-QOS-SM. First, the conventional SM and generalized-SM (GSM) schemes are reinterpreted as a new transmission scheme based on a spatial modulation matrix (SMM), whose column indices are used for the mapping of spatial-information bits unlike the conventional ones. Next, by adopting the SMM comprising the Q-QOSs, the proposed Q-QOS-SM that guarantees twice the number of spatial bits at a transmitter compared with the SM with a constraint of transmit antennas, is designed. From the computer-simulation results, the Q-QOS-SM is shown to achieve a greatly improved throughput compared with the conventional SM and GSM schemes, especially, for a large number of the receive antennas. This finding is mainly because the new scheme offers a much higher minimum Euclidean distance than the other schemes.

  • TCP-TFEC: TCP Congestion Control based on Redundancy Setting Method for FEC over Wireless LAN

    Fumiya TESHIMA  Hiroyasu OBATA  Ryo HAMAMOTO  Kenji ISHIDA  

     
    PAPER-Wireless networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2818-2827

    Streaming services that use TCP have increased; however, throughput is unstable due to congestion control caused by packet loss when TCP is used. Thus, TCP control to secure a required transmission rate for streaming communication using Forward Error Correction (FEC) technology (TCP-AFEC) has been proposed. TCP-AFEC can control the appropriate transmission rate according to network conditions using a combination of TCP congestion control and FEC. However, TCP-AFEC was not developed for wireless Local Area Network (LAN) environments; thus, it requires a certain time to set the appropriate redundancy and cannot obtain the required throughput. In this paper, we demonstrate the drawbacks of TCP-AFEC in wireless LAN environments. Then, we propose a redundancy setting method that can secure the required throughput for FEC, i.e., TCP-TFEC. Finally, we show that TCP-TFEC can secure more stable throughput than TCP-AFEC.

  • Improved Sphere Bound on the MLD Performance of Binary Linear Block Codes via Voronoi Region

    Jia LIU  Meilin HE  Jun CHENG  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2572-2577

    In this paper, the Voronoi region of the transmitted codeword is employed to improve the sphere bound on the maximum-likelihood decoding (MLD) performance of binary linear block codes over additive white Gaussian noise (AWGN) channels. We obtain the improved sphere bounds both on the frame-error probability and the bit-error probability. With the framework of the sphere bound proposed by Kasami et al., we derive the conditional decoding error probability on the spheres by defining a subset of the Voronoi region of the transmitted codeword, since the Voronoi regions of a binary linear block code govern the decoding error probability analysis over AWGN channels. The proposed bound improves the sphere bound by Kasami et al. and the sphere bound by Herzberg and Poltyrev. The computational complexity of the proposed bound is similar to that of the sphere bound by Kasami et al.

  • A CMOS Broadband Transceiver with On-Chip Antenna Array and Built-In Pulse-Delay Calibration for Millimeter-Wave Imaging Applications

    Nguyen NGOC MAI-KHANH  Kunihiro ASADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1078-1086

    A fully integrated CMOS pulse transceiver with digital beam-formability for mm-wave active imaging is presented. The on-chip pulse transmitter of the transceiver includes an eight-element antenna array connected to eight pulse transmitters and a built-in relative pulse delay calibration system. The receiver employs a non-coherent detection method by using a FET direct-power detection circuit integrated with an antenna. The receiver dipole-patch antenna derives from the transmitter antenna but is modified with an on-chip DC-bias tail by shorting two arms of the dipole. The bandwidth of the receiver antenna with the DC-bias tail is designed to achieve 50.4-GHz in simulation and to cover the bandwidth of transmitter antennas. The output of the receiver antenna is connected to a resistive self-mixer followed by an on-chip low pass filter and then an amplifier stage. The built-in relative pulse delay calibration system is used to align the pulse delays of each transmitter array elements for the purpose of controlling the beam steering towards imaging objects. Both transmitter and receiver chips are fabricated in a 65-nm CMOS technology process. Measured pulse waveform of the receiver after relatively aligning all Tx's pulses is 0.91 mV (peak-peak) and 3-ns duration with a distance of 25mm between Rx and Tx. Beam steering angles are achieved in measurement by changing the digital delay code of antenna elements. Experimental results show that the proposed on-chip transceiver has an ability of digital transmitted-pulse calibration, controlling of beam-steeting, and pulse detection for active imaging applications.

761-780hit(5768hit)