The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

641-660hit(5768hit)

  • User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network

    Gia Khanh TRAN  Hidekazu SHIMODAIRA  Kei SAKAGUCHI  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2120-2130

    Densification of mmWave smallcells overlaid on the conventional macro cell is considered to be an essential technology for enhanced mobile broadband services and future IoT applications requiring high data rate e.g. automated driving in 5G communication networks. Taking into account actual measurement mobile traffic data which reveal dynamicity in both time and space, this paper proposes a joint optimization of user association and smallcell base station (BS)'s ON/OFF status. The target is to improve the system's energy efficiency while guaranteeing user's satisfaction measured through e.g. delay tolerance. Numerical analyses are conducted to show the effectiveness of the proposed algorithm against dynamic traffic variation.

  • Design and Analysis of First-Order Steerable Nonorthogonal Differential Microphone Arrays

    Qiang YU  Xiaoguang WU  Yaping BAO  

     
    LETTER-Engineering Acoustics

      Vol:
    E101-A No:10
      Page(s):
    1687-1692

    Differential microphone arrays have been widely used in hands-free communication systems because of their frequency-invariant beampatterns, high directivity factors and small apertures. Considering the position of acoustic source always moving within a certain range in real application, this letter proposes an approach to construct the steerable first-order differential beampattern by using four omnidirectional microphones arranged in a non-orthogonal circular geometry. The theoretical analysis and simulation results show beampattern constructed via this method achieves the same direction factor (DF) as traditional DMAs and higher white noise gain (WNG) within a certain angular range. The simulation results also show the proposed method applies to processing speech signal. In experiments, we show the effectiveness and small computation amount of the proposed method.

  • Effective Capacity Analysis for Wireless Relay Network with Different Relay Selection Protocols

    Hui ZHI  Feiyue WANG  Ziju HUANG   

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/04/09
      Vol:
    E101-B No:10
      Page(s):
    2203-2212

    Effective capacity (EC) is an important performance metric for a time-varying wireless channel in order to evaluate the communication rate in the physical layer (PHL) while satisfying the statistical delay quality of service (QoS) requirement in data-link layer (DLL). This paper analyzes EC of amplify-and-forward wireless relay network with different relay selection (RS) protocols. First, through the analysis of the probability density function (PDF) of received signal-to-noise ratio (SNR), the exact expressions of EC for direct transmission (DT), random relay (RR), random relay with direct transmission (RR-WDT), best relay (BR) protocols are derived. Then a novel best relay with direct transmission (BR-WDT) protocol is proposed to maximize EC and an exact expression of EC for BR-WDT protocol is developed. Simulations demonstrate that the derived analytical results well match those of Monte-Carlo simulations. The proposed BR-WDT protocol can always achieve larger EC than other protocols while guaranteeing the delay QoS requirement. Moreover, the influence of distance between source and relay on EC is discussed, and optimal relay position for different RS protocols is estimated. Furthermore, EC of all protocols becomes smaller while delay QoS exponent becomes larger, and EC of BR-WDT becomes better while the number of relays becomes larger.

  • A 920MHz Lumped-Element Wilkinson Power Divider Utilizing LC-Ladder Circuits

    Tadashi KAWAI  Kensuke NAGANO  Akira ENOKIHARA  

     
    BRIEF PAPER

      Vol:
    E101-C No:10
      Page(s):
    801-804

    This paper presents a lumped-element Wilkinson power divider (WPD) using LC-ladder circuits composed of a capacitor and an inductor, and a series LR/CR circuit. The proposed WPD has only seven elements. As a result of designing the divider based on an even/odd mode analysis technique, we theoretically show that broadband WPDs can be realized compared to lumped-element WPDs composed of Π/T-networks and an isolation resistor. By designing the WPD to match at two operating frequencies, the relative bandwidth of about 42% can be obtained. This value is larger than that of the conventional WPD based on the distributed circuit theory. Electromagnetic simulation and experiment are performed to verify the design procedure for the lumped-element WPD designed at a center frequency of 922.5MHz, and good agreement with both is shown.

  • Incremental Environmental Monitoring for Revealing the Ecology of Endangered Fish Open Access

    Yoshinari SHIRAI  Yasue KISHINO  Shin MIZUTANI  Yutaka YANAGISAWA  Takayuki SUYAMA  Takuma OTSUKA  Tadao KITAGAWA  Futoshi NAYA  

     
    INVITED PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2070-2082

    This paper proposes a novel environmental monitoring strategy, incremental environmental monitoring, that enables scientists to reveal the ecology of wild animals in the field. We applied this strategy to the habitat of endangered freshwater fish. Specifically, we designed and implemented a network-based system using distributed sensors to continuously monitor and record the habitat of endangered fish. Moreover, we developed a set of analytical tools to exploit a variety of sensor data, including environmental time-series data such as amount of dissolved oxygen, as well as underwater video capturing the interaction of fish and their environment. We also describe the current state of monitoring the behavior and habitat of endangered fish and discuss solutions for making such environmental monitoring more efficient in the field.

  • On-Demand Data Gathering with a Drone-Based Mobile Sink in Wireless Sensor Networks Exploiting Wake-Up Receivers Open Access

    Hiroyuki YOMO  Akitoshi ASADA  Masato MIYATAKE  

     
    INVITED PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2094-2103

    The introduction of a drone-based mobile sink into wireless sensor networks (WSNs), which has flexible mobility to move to each sensor node and gather data with a single-hop transmission, makes cumbersome multi-hop transmissions unnecessary, thereby facilitating data gathering from widely-spread sensor nodes. However, each sensor node spends significant amount of energy during their idle state where they wait for the mobile sink to come close to their vicinity for data gathering. In order to solve this problem, in this paper, we apply a wake-up receiver to each sensor node, which consumes much smaller power than the main radio used for data transmissions. The main radio interface is woken up only when the wake-up receiver attached to each node detects a wake-up signal transmitted by the mobile sink. For this mobile and on-demand data gathering, this paper proposes a route control framework that decides the mobility route for a drone-based mobile sink, considering the interactions between wake-up control and physical layer (PHY) and medium access control (MAC) layer operations. We investigate the optimality and effectiveness of the route obtained by the proposed framework with computer simulations. Furthermore, we present experimental results obtained with our test-bed of a WSN employing a drone-based mobile sink and wake-up receivers. All these results give us the insight on the role of wake-up receiver in mobile and on-demand sensing data gathering and its interactions with protocol/system designs.

  • A Guide of Fingerprint Based Radio Emitter Localization Using Multiple Sensors Open Access

    Tao YU  Azril HANIZ  Kentaro SANO  Ryosuke IWATA  Ryouta KOSAKA  Yusuke KUKI  Gia Khanh TRAN  Jun-ichi TAKADA  Kei SAKAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2018/04/17
      Vol:
    E101-B No:10
      Page(s):
    2104-2119

    Location information is essential to varieties of applications. It is one of the most important context to be detected by wireless distributed sensors, which is a key technology in Internet-of-Things. Fingerprint-based methods, which compare location unique fingerprints collected beforehand with the fingerprint measured from the target, have attracted much attention recently in both of academia and industry. They have been successfully used for many location-based applications. From the viewpoint of practical applications, in this paper, four different typical approaches of fingerprint-based radio emitter localization system are introduced with four different representative applications: localization of LTE smart phone used for anti-cheating in exams, indoor localization of Wi-Fi terminals, localized light control in BEMS using location information of occupants, and illegal radio localization in outdoor environments. Based on the different practical application scenarios, different solutions, which are designed to enhance the localization performance, are discussed in detail. To the best of the authors' knowledge, this is the first paper to give a guideline for readers about fingerprint-based localization system in terms of fingerprint selection, hardware architecture design and algorithm enhancement.

  • Performance Analysis and Hardware Verification of Feature Detection Using Cyclostationarity in OFDM Signal

    Akihide NAGAMINE  Kanshiro KASHIKI  Fumio WATANABE  Jiro HIROKAWA  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2142-2151

    As one functionality of the wireless distributed network (WDN) enabling flexible wireless networks, it is supposed that a dynamic spectrum access is applied to OFDM systems for superior radio resource management. As a basic technology for such WDN, our study deals with the OFDM signal detection based on its cyclostationary feature. Previous relevant studies mainly relied on software simulations based on the Monte Carlo method. This paper analytically clarifies the relationship between the design parameters of the detector and its detection performance. The detection performance is formulated by using multiple design parameters including the transfer function of the receive filter. A hardware experiment with radio frequency (RF) signals is also carried out by using the detector consisting of an RF unit and FPGA. Thereby, it is verified that the detection characteristics represented by the false-alarm and non-detection probabilities calculated by the analytical formula agree well with those obtained by the hardware experiment. Our analysis and experiment results are useful for the parameter design of the signal detector to satisfy required performance criteria.

  • Data Synchronization Method among Isolated Servers Using Mobile Relays

    Kazuya ANAZAWA  Toshiaki MIYAZAKI  Peng LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/04/04
      Vol:
    E101-B No:10
      Page(s):
    2239-2249

    After large-scale disasters, information sharing among people becomes more important than usual. This, however, is extremely difficult to achieve in disaster zones due to serious damage to the existing network infrastructure, power outages, and high traffic congestion. For the quick provision of alternative networks to serve heavy communication demands after disasters, establishing local area networks (LANs) consisting of portable servers with data storage has been considered as one of the most promising solutions. Based on the established LAN and a data server in each area, people can share many kinds of disaster-related information such as emergency information and supply/demand information via deployed neighboring servers. However, due to the lack of stable Internet connection, these servers are isolated and cannot be synchronized in real time. To enable and guarantee more efficient information sharing across the whole disaster-hit area, data stored on each server should be synchronized without the Internet. Our solution is to propose an intermittent data synchronization scheme that uses moving vehicles as relays to exchange data between isolated servers after disasters. With the objective of maximizing the total number of synchronized high priority data under the capability constraints of mobile relays, we first propose a data allocation scheme (DAS) from a server to a mobile relay. After that, we propose a trajectory planning scheme for the relays which is formulated as a Mixed Integer Linear Fractional Programming (MILFP) problem, and an algorithm to solve it efficiently. Extensive simulations and comparisons with other methods show the superior performance of our proposals.

  • Underground Infrastructure Management System using Internet of Things Wireless Transmission Technology Open Access

    Yo YAMAGUCHI  Yosuke FUJINO  Hajime KATSUDA  Marina NAKANO  Hiroyuki FUKUMOTO  Shigeru TERUHI  Kazunori AKABANE  Shuichi YOSHINO  

     
    INVITED PAPER

      Vol:
    E101-C No:10
      Page(s):
    727-733

    This paper presents a water leakage monitoring system that gathers acoustic data of water pipes using wireless communication technology and identifies the sound of water leakage using machine leaning technology. To collect acoustic data effectively, this system combines three types of data-collection methods: drive-by, walk-by, and static. To design this system, it is important to ascertain the wireless communication distance that can be achieved with sensors installed in a basement. This paper also reports on radio propagation from underground manholes made from reinforced concrete and resin concrete in residential and commercial areas using the 920 MHz band. We reveal that it is possible to design a practical system that uses radio communication from underground sensors.

  • Design of Dual-Band SHF BPF with Lower Band Reconfigurability and Direct Parallel-Connected Configuration

    Yuki KADA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    775-783

    For more flexible and efficient use of radio spectrum, reconfigurable RF devices have important roles in the future wireless systems. In 5G mobile communications, concurrent multi-band operation using new SHF bands is considered. This paper presents a new configuration of dual-band SHF BPF consisting of a low SHF three-bit reconfigurable BPF and a high SHF BPF. The proposed dual-band BPF employs direct parallel connection without additional divider/combiner to reduce circuit elements and simplify the BPF. In order to obtain a good isolation between two passbands while achieving a wide center frequency range in the low SHF BPF, input/output impedances and external Qs of BPFs are analyzed and feedbacked to the design. A high SHF BPF design method with tapped transmission line resonators and lumped-element coupling is also presented to make the BPF compact. Two types of prototypes; all inductor-coupled dual-band BPF and C-L-C coupled dual-band BPF were designed and fabricated. Both prototypes have low SHF reconfigurable center frequency range from 3.5 to 5 GHz as well as high SHF center frequency of 8.5 GHz with insertion loss below 2.0 dB.

  • Design of Capacitive Coupler in Underwater Wireless Power Transfer Focusing on kQ Product

    Masaya TAMURA  Yasumasa NAKA  Kousuke MURAI  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    759-766

    This paper presents the design of a capacitive coupler for underwater wireless power transfer (U-WPT) focusing on kQ product. Power transfer efficiency hinges on the coupling coefficient k between the couplers and Q-factor of water calculated from the complex permittivity. High efficiency can be achieved by handling k and the Q-factor effectively. First, the pivotal elements on k are derived from the equivalent circuit of the coupler. Next, the frequency characteristic of the Q-factor in tap water is calculated from the measured results. Then, the design parameters in which kQ product has the maximal values are determined. Finally, it is demonstrated that the efficiency of U-WPT with the capacitive coupling designed by our method achieves approximately 80%.

  • Numerical Simulation of Single-Electron Tunneling in Random Arrays of Small Tunnel Junctions Formed by Percolation of Conductive Nanoparticles

    Yoshinao MIZUGAKI  Hiroshi SHIMADA  Ayumi HIRANO-IWATA  Fumihiko HIROSE  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:10
      Page(s):
    836-839

    We numerically simulated electrical properties, i.e., the resistance and Coulomb blockade threshold, of randomly-placed conductive nanoparticles. In simulation, tunnel junctions were assumed to be formed between neighboring particle-particle and particle-electrode connections. On a plane of triangle 100×100 grids, three electrodes, the drain, source, and gate, were defined. After random placements of conductive particles, the connection between the drain and source electrodes were evaluated with keeping the gate electrode disconnected. The resistance was obtained by use of a SPICE-like simulator, whereas the Coulomb blockade threshold was determined from the current-voltage characteristics simulated using a Monte-Carlo simulator. Strong linear correlation between the resistance and threshold voltage was confirmed, which agreed with results for uniform one-dimensional arrays.

  • Generic Constructions for Fully Secure Revocable Attribute-Based Encryption

    Kotoko YAMADA  Nuttapong ATTRAPADUNG  Keita EMURA  Goichiro HANAOKA  Keisuke TANAKA  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1456-1472

    Attribute-based encryption (ABE), a cryptographic primitive, realizes fine-grained access control. Because of its attractive functionality, many systems based on ABE have been constructed to date. In such cryptographic systems, revocation functionality is indispensable to handle withdrawal of users, secret key exposure, and others. Although many ABE schemes with various functionalities have been proposed, only a few of these are revocable ABE (RABE). In this paper, we propose two generic constructions of RABE from ABE. Our first construction employs the pair encoding framework (Attrapadung, EUROCRYPT 2014), and combines identity-based revocation and ABE via the generic conjunctive conversion of Attrapadung and Yamada (CT-RSA 2015). Our second construction converts ABE to RABE directly when ABE supports Boolean formulae. Because our constructions preserve functionalities of the underlying ABE, we can instantiate various fully secure RABE schemes for the first time, e.g., supporting regular languages, with unbounded attribute size and policy structure, and with constant-size ciphertext and secret key.

  • A Propagation Method for Multi Object Tracklet Repair

    Nii L. SOWAH  Qingbo WU  Fanman MENG  Liangzhi TANG  Yinan LIU  Linfeng XU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/05/29
      Vol:
    E101-D No:9
      Page(s):
    2413-2416

    In this paper, we improve upon the accuracy of existing tracklet generation methods by repairing tracklets based on their quality evaluation and detection propagation. Starting from object detections, we generate tracklets using three existing methods. Then we perform co-tracklet quality evaluation to score each tracklet and filtered out good tracklet based on their scores. A detection propagation method is designed to transfer the detections in the good tracklets to the bad ones so as to repair bad tracklets. The tracklet quality evaluation in our method is implemented by intra-tracklet detection consistency and inter-tracklet detection completeness. Two propagation methods; global propagation and local propagation are defined to achieve more accurate tracklet propagation. We demonstrate the effectiveness of the proposed method on the MOT 15 dataset

  • Research on the Impedance Characteristic of a Two-Coil Wireless Power Transfer System

    Suqi LIU  Jianping TAN  Xue WEN  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:9
      Page(s):
    711-717

    Wireless power transfer (WPT) via coupled magnetic resonances has more than ten years history of development. However, it appears frequency splitting phenomenon in the over-coupled region, thus, the output power of the two-coil WPT system achieves the maximum output power at the two splitting angular frequencies and not at the natural resonant angular frequency. By investigating the relationship between the impedances of the transmitter side and receiver side, we found that WPT system is a power superposition system, and the reasons were given to explaining how to appear the frequency splitting and impact on the maximum output power of the system in details. First, the circuit model was established and transfer characteristics of the two-coil WPT system were studied by utilizing circuit theories. Second, the mechanism of the power superposition of the WPT system was carefully researched. Third, the relationship between the impedances of the transmitter side and receiver side was obtained by investigating the impedance characteristics of a two-coil WPT system, and also the impact factors of the maximum output power of the system were obtained by using a power superposition mechanism. Finally, the experimental circuit was designed and experimental results are well consistent with the theoretical analysis.

  • Formal Method for Security Analysis of Electronic Payment Protocols

    Yi LIU  Qingkun MENG  Xingtong LIU  Jian WANG  Lei ZHANG  Chaojing TANG  

     
    PAPER-Information Network

      Pubricized:
    2018/06/19
      Vol:
    E101-D No:9
      Page(s):
    2291-2297

    Electronic payment protocols provide secure service for electronic commerce transactions and protect private information from malicious entities in a network. Formal methods have been introduced to verify the security of electronic payment protocols; however, these methods concentrate on the accountability and fairness of the protocols, without considering the impact caused by timeliness. To make up for this deficiency, we present a formal method to analyze the security properties of electronic payment protocols, namely, accountability, fairness and timeliness. We add a concise time expression to an existing logical reasoning method to represent the event time and extend the time characteristics of the logical inference rules. Then, the Netbill protocol is analyzed with our formal method, and we find that the fairness of the protocol is not satisfied due to the timeliness problem. The results illustrate that our formal method can analyze the key properties of electronic payment protocols. Furthermore, it can be used to verify the time properties of other security protocols.

  • Reciprocal Kit-Build Concept Map: An Approach for Encouraging Pair Discussion to Share Each Other's Understanding

    Warunya WUNNASRI  Jaruwat PAILAI  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2018/05/29
      Vol:
    E101-D No:9
      Page(s):
    2356-2367

    Collaborative learning is an active teaching and learning strategy, in which learners who give each other elaborated explanations can learn most. However, it is difficult for learners to explain their own understanding elaborately in collaborative learning. In this study, we propose a collaborative use of a Kit-Build concept map (KB map) called “Reciprocal KB map”. In a Reciprocal KB map for a pair discussion, at first, the two participants make their own concept maps expressing their comprehension. Then, they exchange the components of their maps and request each other to reconstruct their maps by using the components. The differences between the original map and the reconstructed map are diagnosed automatically as an advantage of the KB map. Reciprocal KB map is expected to encourage pair discussion to recognize the understanding of each other and to create an effective discussion. In an experiment reported in this paper, Reciprocal KB map was used for supporting a pair discussion and was compared with a pair discussion which was supported by a traditional concept map. Nineteen pairs of university students were requested to use the traditional concept map in their discussion, while 20 pairs of university students used Reciprocal KB map for discussing the same topic. The results of the experiment were analyzed using three metrics: a discussion score, a similarity score, and questionnaires. The discussion score, which investigates the value of talk in discussion, demonstrates that Reciprocal KB map can promote more effective discussion between the partners compared to the traditional concept map. The similarity score, which evaluates the similarity of the concept maps, demonstrates that Reciprocal KB map can encourage the pair of partners to understand each other better compared to the traditional concept map. Last, the questionnaires illustrate that Reciprocal KB map can support the pair of partners to collaborate in the discussion smoothly and that the participants accepted this method for sharing their understanding with each other. These results suggest that Reciprocal KB map is a promising approach for encouraging pairs of partners to understand each other and to promote the effective discussions.

  • A Unified Neural Network for Quality Estimation of Machine Translation

    Maoxi LI  Qingyu XIANG  Zhiming CHEN  Mingwen WANG  

     
    LETTER-Natural Language Processing

      Pubricized:
    2018/06/18
      Vol:
    E101-D No:9
      Page(s):
    2417-2421

    The-state-of-the-art neural quality estimation (QE) of machine translation model consists of two sub-networks that are tuned separately, a bidirectional recurrent neural network (RNN) encoder-decoder trained for neural machine translation, called the predictor, and an RNN trained for sentence-level QE tasks, called the estimator. We propose to combine the two sub-networks into a whole neural network, called the unified neural network. When training, the bidirectional RNN encoder-decoder are initialized and pre-trained with the bilingual parallel corpus, and then, the networks are trained jointly to minimize the mean absolute error over the QE training samples. Compared with the predictor and estimator approach, the use of a unified neural network helps to train the parameters of the neural networks that are more suitable for the QE task. Experimental results on the benchmark data set of the WMT17 sentence-level QE shared task show that the proposed unified neural network approach consistently outperforms the predictor and estimator approach and significantly outperforms the other baseline QE approaches.

  • Computational Power of Threshold Circuits of Energy at most Two

    Hiroki MANIWA  Takayuki OKI  Akira SUZUKI  Kei UCHIZAWA  Xiao ZHOU  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1431-1439

    The energy of a threshold circuit C is defined to be the maximum number of gates outputting ones for an input assignment, where the maximum is taken over all the input assignments. In this paper, we study computational power of threshold circuits of energy at most two. We present several results showing that the computational power of threshold circuits of energy one and the counterpart of energy two are remarkably different. In particular, we give an explicit function which requires an exponential size for threshold circuits of energy one, but is computable by a threshold circuit of size just two and energy two. We also consider MOD functions and Generalized Inner Product functions, and show that these functions also require exponential size for threshold circuits of energy one, but are computable by threshold circuits of substantially less size and energy two.

641-660hit(5768hit)