The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

821-840hit(5768hit)

  • Iteration-Free Bi-Dimensional Empirical Mode Decomposition and Its Application

    Taravichet TITIJAROONROJ  Kuntpong WORARATPANYA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/06/19
      Vol:
    E100-D No:9
      Page(s):
    2183-2196

    A bi-dimensional empirical mode decomposition (BEMD) is one of the powerful methods for decomposing non-linear and non-stationary signals without a prior function. It can be applied in many applications such as feature extraction, image compression, and image filtering. Although modified BEMDs are proposed in several approaches, computational cost and quality of their bi-dimensional intrinsic mode function (BIMF) still require an improvement. In this paper, an iteration-free computation method for bi-dimensional empirical mode decomposition, called iBEMD, is proposed. The locally partial correlation for principal component analysis (LPC-PCA) is a novel technique to extract BIMFs from an original signal without using extrema detection. This dramatically reduces the computation time. The LPC-PCA technique also enhances the quality of BIMFs by reducing artifacts. The experimental results, when compared with state-of-the-art methods, show that the proposed iBEMD method can achieve the faster computation of BIMF extraction and the higher quality of BIMF image. Furthermore, the iBEMD method can clearly remove an illumination component of nature scene images under illumination change, thereby improving the performance of text localization and recognition.

  • Saliency-Guided Stereo Camera Control for Comfortable VR Explorations

    Yeo-Jin YOON  Jaechun NO  Soo-Mi CHOI  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2017/06/01
      Vol:
    E100-D No:9
      Page(s):
    2245-2248

    The quality of visual comfort and depth perception is a crucial requirement for virtual reality (VR) applications. This paper investigates major causes of visual discomfort and proposes a novel virtual camera controlling method using visual saliency to minimize visual discomfort. We extract the saliency of each scene and properly adjust the convergence plane to preserve realistic 3D effects. We also evaluate the effectiveness of our method on free-form architecture models. The results indicate that the proposed saliency-guided camera control is more comfortable than typical camera control and gives more realistic depth perception.

  • A Gate Delay Mismatch Tolerant Time-Mode Analog Accumulator Using a Delay Line Ring

    Tomohiko YANO  Toru NAKURA  Tetsuya IIZUKA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E100-C No:9
      Page(s):
    736-745

    In this paper, we propose a novel gate delay time mismatch tolerant time-mode signal accumulator whose input and output are represented by a time difference of two digital signal transitions. Within the proposed accumulator, the accumulated value is stored as the time difference between the two pulses running around the same ring of a delay line, so that there is no mismatch between the periods of the two pulses, thus the output drift of the accumulator is suppressed in principle without calibrating mismatch of two rings, which is used to store the accumulated value in the conventional one. A prototype of the proposed accumulator was fabricated in 180nm CMOS. The accumulating operation is confirmed by both time and frequency domain experiments. The standard deviation of the error of the accumulating operation is 9.8ps, and compared with the previous work, the peak error over full-scale is reduced by 46% without calibrating the output drift.

  • Throughput Improvement of Mobile Cooperative WLAN Systems with Identifying and Management of Starved APs/UEs for 5G

    Akiyoshi INOKI  Hirantha ABEYSEKERA  Munehiro MATSUI  Kenichi KAWAMURA  Takeo ICHIKAWA  Yasushi TAKATORI  Masato MIZOGUCHI  Akira KISHIDA  Yoshifumi MORIHIRO  Takahiro ASAI  Yukihiko OKUMURA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/04/17
      Vol:
    E100-B No:8
      Page(s):
    1366-1376

    Efficient use of heterogeneous wireless access networks is necessary to maximize the capacity of the 5G mobile communications system. The wireless local area networks (WLANs) are considered to be one of the key wireless access networks because of the proliferation of WLAN-capable mobile devices. However, throughput starvation can occur due to the well-known exposed/hidden terminal problem in carrier sense multiple access with collision avoidance (CSMA/CA) based channel access mechanism, and this problem is a critical issue with wireless LAN systems. This paper proposes two novel schemes to identify starved access points (APs) and user equipments (UEs) which throughputs are relatively low. One scheme identifies starved APs by observing the transmission delay of beacon signals periodically transmitted by APs. The other identifies starved UEs by using the miscaptured beacon signals ratio at UEs. Numerous computer simulations verify that that the schemes can identify starved APs and UEs having quite low throughput and are superior to the conventional graph-based identification scheme. In addition, AP and UE management with the proposed schemes has the potential to improve system throughput and reduce the number of low throughput UEs.

  • Expansion of Bartlett's Bisection Theorem Based on Group Theory

    Yoshikazu FUJISHIRO  Takahiko YAMAMOTO  Kohji KOSHIJI  

     
    PAPER-Circuit Theory

      Vol:
    E100-A No:8
      Page(s):
    1623-1639

    This paper expands Bartlett's bisection theorem. The theory of modal S-parameters and their circuit representation is constructed from a group-theoretic perspective. Criteria for the division of a circuit at a fixed node whose state is distinguished by the irreducible representation of its stabilizer subgroup are obtained, after being inductively introduced using simple circuits as examples. Because these criteria use only circuit symmetry and do not require human judgment, the distinction is reliable and implementable in a computer. With this knowledge, the entire circuit can be characterized by a finite combination of smaller circuits. Reducing the complexity of symmetric circuits contributes to improved insights into their characterization, and to savings of time and effort in calculations when applied to large-scale circuits. A three-phase filter and a branch-line coupler are analyzed as application examples of circuit and electromagnetic field analysis, respectively.

  • Compressive Sensing Meets Dictionary Mismatch: Taylor Approximation-Based Adaptive Dictionary Algorithm for Multiple Target Localization in WSNs

    Yan GUO  Baoming SUN  Ning LI  Peng QIAN  

     
    PAPER-Network

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1397-1405

    Many basic tasks in Wireless Sensor Networks (WSNs) rely heavily on the availability and accuracy of target locations. Since the number of targets is usually limited, localization benefits from Compressed Sensing (CS) in the sense that measurements can be greatly reduced. Though some CS-based localization schemes have been proposed, all of these solutions make an assumption that all targets are located on a pre-sampled and fixed grid, and perform poorly when some targets are located off the grid. To address this problem, we develop an adaptive dictionary algorithm where the grid is adaptively adjusted. To achieve this, we formulate localization as a joint parameter estimation and sparse signal recovery problem. Additionally, we transform the problem into a tractable convex optimization problem by using Taylor approximation. Finally, the block coordinate descent method is leveraged to iteratively optimize over the parameters and sparse signal. After iterations, the measurements can be linearly represented by a sparse signal which indicates the number and locations of targets. Extensive simulation results show that the proposed adaptive dictionary algorithm provides better performance than state-of-the-art fixed dictionary algorithms.

  • Automatic Generation System for Multiple-Valued Galois-Field Parallel Multipliers

    Rei UENO  Naofumi HOMMA  Takafumi AOKI  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1603-1610

    This paper presents a system for the automatic generation of Galois-field (GF) arithmetic circuits, named the GF Arithmetic Module Generator (GF-AMG). The proposed system employs a graph-based circuit description called the GF Arithmetic Circuit Graph (GF-ACG). First, we present an extension of the GF-ACG to handle GF(pm) (p≥3) arithmetic circuits, which can be efficiently implemented by multiple-valued logic circuits in addition to the conventional binary circuits. We then show the validity of the generation system through the experimental design of GF(pm) multipliers for different p-values. In addition, we evaluate the performance of three types of GF(2m) multipliers and typical GF(pm) multipliers (p≥3) empirically generated by our system. We confirm from the results that the proposed system can generate a variety of GF parallel multipliers, including practical multipliers over GF(pm) having extension degrees greater than 128.

  • Affinity Propagation Algorithm Based Multi-Source Localization Method for Binary Detection

    Yan WANG  Long CHENG  Jian ZHANG  

     
    LETTER-Information Network

      Pubricized:
    2017/05/10
      Vol:
    E100-D No:8
      Page(s):
    1916-1919

    Wireless sensor network (WSN) has attracted many researchers to investigate it in recent years. It can be widely used in the areas of surveillances, health care and agriculture. The location information is very important for WSN applications such as geographic routing, data fusion and tracking. So the localization technology is one of the key technologies for WSN. Since the computational complexity of the traditional source localization is high, the localization method can not be used in the sensor node. In this paper, we firstly introduce the Neyman-Pearson criterion based detection model. This model considers the effect of false alarm and missing alarm rate, so it is more realistic than the binary and probability model. An affinity propagation algorithm based localization method is proposed. Simulation results show that the proposed method provides high localization accuracy.

  • Multi-Group Signature Scheme for Simultaneous Verification by Neighbor Services

    Kenta NOMURA  Masami MOHRI  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER-Cryptographic Schemes

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1770-1779

    We focus on the construction of the digital signature scheme for local broadcast, which allows the devices with limited resources to securely transmit broadcast message. A multi-group authentication scheme that enables a node to authenticate its membership in multi verifiers by the sum of the secret keys has been proposed for limited resources. This paper presents a transformation which converts a multi-group authentication into a multi-group signature scheme. We show that the multi-group signature scheme converted by our transformation is existentially unforgeable against chosen message attacks (EUF-CMA secure) in the random oracle model if the multi-group authentication scheme is secure against impersonation under passive attacks (IMP-PA secure). In the multi-group signature scheme, a sender can sign a message by the secret keys which multiple certification authorities issue and the signature can validate the authenticity and integrity of the message to multiple verifiers. As a specific configuration example, we show the example in which the multi-group signature scheme by converting an error correcting code-based multi-group authentication scheme.

  • An Overview of Security and Privacy Issues for Internet of Things Open Access

    Heung Youl YOUM  

     
    INVITED PAPER

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1649-1662

    The Internet of Things (IoT) is defined as a global infrastructure for the Information Society, enabling advanced services by interconnecting (physical and virtual) things based on, existing and evolving, interoperable information and communication technologies by ITU-T. Data may be communicated in low-power and lossy environments, which causes complicated security issues. Furthermore, concerns are raised over access of personally identifiable information pertaining to IoT devices, network and platforms. Security and privacy concerns have been main barriers to implement IoT, which needs to be resolved appropriate security and privacy measures. This paper describes security threats and privacy concerns of IoT, surveys current studies related to IoT and identifies the various requirements and solutions to address these security threats and privacy concerns. In addition, this paper also focuses on major global standardization activities for security and privacy of Internet of Things. Furthermore, future directions and strategies of international standardization for theInternet of Thing's security and privacy issues will be given. This paper provides guidelines to assist in suggesting the development and standardization strategies forward to allow a massive deployment of IoT systems in real world.

  • Demonstration of Three-Dimensional Near-Field Beamforming by Planar Loop Array for Magnetic Resonance Wireless Power Transfer

    Bo-Hee CHOI  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1449-1453

    This paper presents a capacitor-loaded 4x4 planar loop array for three-dimensional near-field beamforming of magnetic resonance wireless power transfer (WPT). This planar loop array provides three important functions: beamforming, selective power transfer, and the ability to work alignment free with the receiver. These functions are realized by adjusting the capacitance of each loop. The optimal capacitance of each loop that corresponds to the three functions can be found using a genetic algorithm (GA); the three functions were verified by comparing simulations and measurements at a frequency of 6.78MHz. Finally, the beamforming mechanism of a near-field loop array was investigated using the relationship between the current magnitude and the resonance frequency of each loop, resulting in the findings that the magnitude and the resonance frequency are correlated. This focused current of the specified loop creates a strong magnetic field in front of that loop, resulting in near-field beamforming.

  • High-Accuracy and Area-Efficient Stochastic FIR Digital Filters Based on Hybrid Computation

    Shunsuke KOSHITA  Naoya ONIZAWA  Masahide ABE  Takahiro HANYU  Masayuki KAWAMATA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/22
      Vol:
    E100-D No:8
      Page(s):
    1592-1602

    This paper presents FIR digital filters based on stochastic/binary hybrid computation with reduced hardware complexity and high computational accuracy. Recently, some attempts have been made to apply stochastic computation to realization of digital filters. Such realization methods lead to significant reduction of hardware complexity over the conventional filter realizations based on binary computation. However, the stochastic digital filters suffer from lower computational accuracy than the digital filters based on binary computation because of the random error fluctuations that are generated in stochastic bit streams, stochastic multipliers, and stochastic adders. This becomes a serious problem in the case of FIR filter realizations compared with the IIR counterparts because FIR filters usually require larger number of multiplications and additions than IIR filters. To improve the computational accuracy, this paper presents a stochastic/binary hybrid realization, where multipliers are realized using stochastic computation but adders are realized using binary computation. In addition, a coefficient-scaling technique is proposed to further improve the computational accuracy of stochastic FIR filters. Furthermore, the transposed structure is applied to the FIR filter realization, leading to reduction of hardware complexity. Evaluation results demonstrate that our method achieves at most 40dB improvement in minimum stopband attenuation compared with the conventional pure stochastic design.

  • Fair Power Control Algorithm in Cognitive Radio Networks Based on Stackelberg Game

    Zheng-qiang WANG  Xiao-yu WAN  Zi-fu FAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:8
      Page(s):
    1738-1741

    This letter studies the price-based power control algorithm for the spectrum sharing cognitive radio networks. The primary user (PU) profits from the secondary users (SUs) by pricing the interference power made by them. The SUs cooperate with each other to maximize their sum revenue with the signal-to-interference plus noise ratio (SINR) balancing condition. The interaction between the PU and the SUs is modeled as a Stackelberg game. Closed-form expressions of the optimal price for the PU and power allocation for the SUs are given. Simulation results show the proposed algorithm improves the revenue of both the PU and fairness of the SUs compared with the uniform pricing algorithm.

  • Radio Resource Management Based on User and Network Characteristics Considering 5G Radio Access Network in a Metropolitan Environment

    Akira KISHIDA  Yoshifumi MORIHIRO  Takahiro ASAI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1352-1365

    In this paper, we clarify the issues in a metropolitan environment involving overlying frequency bands with various bandwidths and propose a cell selection scheme that improves the communications quality based on user and network characteristics. Different frequency bands with various signal bandwidths will be overlaid on each other in forthcoming fifth-generation (5G) radio access networks. At the same time, services, applications or features of sets of user equipment (UEs) will become more diversified and the requirements for the quality of communications will become more varied. Moreover, in real environments, roads and buildings have irregular constructions. Especially in an urban or metropolitan environment, the complex architecture present in a metropolis directly affects radio propagation. Under these conditions, the communications quality is degraded because cell radio resources are depleted due to many UE connections and the mismatch between service requirements and cell capabilities. The proposed scheme prevents this degradation in communications quality. The effectiveness of the proposed scheme is evaluated in an ideal regular deployment and in a non-regular metropolitan environment based on computer simulations. Simulation results show that the average of the time for the proposed scheme from the start of transmission to the completion of reception at the UE is improved by approximately 40% compared to an existing cell selection scheme that is based on the Maximum Signal-to-Interference plus Noise power Ratio (SINR).

  • Backscatter Assisted Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Bin LYU  Zhen YANG  Guan GUI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1724-1728

    This letter considers a backscatter assisted wireless powered communication network (BAWPCN) with non-orthogonal multiple access (NOMA). This model consists of a hybrid access point (HAP) and multiple users which can work in either backscatter or harvest-then-transmit (HTT) protocol. To fully exploit time for information transmission, the users working in the backscatter protocol are scheduled to reflect modulated signals during the first phase of the HTT protocol which is dedicated for energy transfer. During the second phase, all users working in the HTT protocol transmit information to the HAP simultaneously since NOMA is adopted. Considering both short-term and long-term optimization problems to maximize the system throughput, the optimal resource allocation policies are obtained. Simulation results show that the proposed model can significantly improve the system performance.

  • Decentralized Iterative User Association Method for (p,α)-Proportional Fair-Based System Throughput Maximization in Heterogeneous Cellular Networks

    Kenichi HIGUCHI  Yasuaki YUDA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1323-1333

    This paper proposes a new user association method to maximize the downlink system throughput in a cellular network, where the system throughput is defined based on (p,α)-proportional fairness. The proposed method assumes a fully decentralized approach, which is practical in a real system as complicated inter-base station (BS) cooperation is not required. In the proposed method, each BS periodically and individually broadcasts supplemental information regarding its bandwidth allocation to newly connected users. Assisted by this information, each user calculates the expected throughput that will be obtained by connecting to the respective BSs. Each user terminal feeds back the metric for user association to the temporally best BS, which represents a relative increase in throughput through re-association to that BS. Based on the reported metrics from multiple users, each BS individually updates the user association. The proposed method gives a general framework for optimal user association for (p,α)-proportional fairness-based system throughput maximization and is especially effective in heterogeneous cellular networks where low transmission-power pico BSs overlay a high transmission-power macro BS. Computer simulation results show that the proposed method maximizes the system throughput from the viewpoint of the given (p,α)-proportional fairness.

  • Fine-Grained Analysis of Compromised Websites with Redirection Graphs and JavaScript Traces

    Yuta TAKATA  Mitsuaki AKIYAMA  Takeshi YAGI  Takeshi YADA  Shigeki GOTO  

     
    PAPER-Internet Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1714-1728

    An incident response organization such as a CSIRT contributes to preventing the spread of malware infection by analyzing compromised websites and sending abuse reports with detected URLs to webmasters. However, these abuse reports with only URLs are not sufficient to clean up the websites. In addition, it is difficult to analyze malicious websites across different client environments because these websites change behavior depending on a client environment. To expedite compromised website clean-up, it is important to provide fine-grained information such as malicious URL relations, the precise position of compromised web content, and the target range of client environments. In this paper, we propose a new method of constructing a redirection graph with context, such as which web content redirects to malicious websites. The proposed method analyzes a website in a multi-client environment to identify which client environment is exposed to threats. We evaluated our system using crawling datasets of approximately 2,000 compromised websites. The result shows that our system successfully identified malicious URL relations and compromised web content, and the number of URLs and the amount of web content to be analyzed were sufficient for incident responders by 15.0% and 0.8%, respectively. Furthermore, it can also identify the target range of client environments in 30.4% of websites and a vulnerability that has been used in malicious websites by leveraging target information. This fine-grained analysis by our system would contribute to improving the daily work of incident responders.

  • Cloud Provider Selection Models for Cloud Storage Services to Satisfy Availability Requirements

    Eiji OKI  Ryoma KANEKO  Nattapong KITSUWAN  Takashi KURIMOTO  Shigeo URUSHIDANI  

     
    PAPER-Network

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1406-1418

    Cost-effective cloud storage services are attracting users with their convenience, but there is a trade-off between service availability and usage cost. We develop two cloud provider selection models for cloud storage services to minimize the total cost of usage. The models select multiple cloud providers to meet the user requirements while considering unavailability. The first model, called a user-copy (UC) model, allows the selection of multiple cloud providers, where the user copies its data to multiple providers. In addition to the user copy function of the UC model, the second model, which is called a user and cloud-provider copy (UCC) model, allows cloud providers to make copies of the data to deliver them to other cloud providers. The cloud service is available if at least one cloud provider is available. We formulate both models as integer linear programming (ILP) problems. Our performance evaluation observes that both models reduce the total cost of usage, compared to the single cloud provider selection approach. As the cost of bandwidth usage between a user and a cloud provider increases, the UCC model becomes more beneficial than the UC model. We implement the prototype for cloud storage services, and demonstrate our models via Science Information Network 5.

  • Leveraging Compressive Sensing for Multiple Target Localization and Power Estimation in Wireless Sensor Networks

    Peng QIAN  Yan GUO  Ning LI  Baoming SUN  

     
    PAPER-Network

      Pubricized:
    2017/02/09
      Vol:
    E100-B No:8
      Page(s):
    1428-1435

    The compressive sensing (CS) theory has been recognized as a promising technique to achieve the target localization in wireless sensor networks. However, most of the existing works require the prior knowledge of transmitting powers of targets, which is not conformed to the case that the information of targets is completely unknown. To address such a problem, in this paper, we propose a novel CS-based approach for multiple target localization and power estimation. It is achieved by formulating the locations and transmitting powers of targets as a sparse vector in the discrete spatial domain and the received signal strengths (RSSs) of targets are taken to recover the sparse vector. The key point of CS-based localization is the sensing matrix, which is constructed by collecting RSSs from RF emitters in our approach, avoiding the disadvantage of using the radio propagation model. Moreover, since the collection of RSSs to construct the sensing matrix is tedious and time-consuming, we propose a CS-based method for reconstructing the sensing matrix from only a small number of RSS measurements. It is achieved by exploiting the CS theory and designing an difference matrix to reveal the sparsity of the sensing matrix. Finally, simulation results demonstrate the effectiveness and robustness of our localization and power estimation approach.

  • Virtualizing Graphics Architecture of Android Mobile Platforms in KVM/ARM Environment

    Sejin PARK  Byungsu PARK  Unsung LEE  Chanik PARK  

     
    PAPER-Software System

      Pubricized:
    2017/04/18
      Vol:
    E100-D No:7
      Page(s):
    1403-1415

    With the availability of virtualization extension in mobile processors, e.g. ARM Cortex A-15, multiple virtual execution domains are efficiently supported in a mobile platform. Each execution domain requires high-performance graphics services for full-featured user interfaces such as smooth scrolling, background image blurring, and 3D images. However, graphics service is hard to be virtualized because multiple service components (e.g. ION and Fence) are involved. Moreover, the complexity of Graphical Processing Unit (GPU) device driver also makes harder virtualizing graphics service. In this paper, we propose a technique to virtualize the graphics architecture of Android mobile platform in KVM/ARM environment. The Android graphics architecture relies on underlying Linux kernel services such as the frame buffer memory allocator ION, the buffer synchronization service Fence, GPU device driver, and the display synchronization service VSync. These kernel services are provided as device files in Linux kernel. Our approach is to para-virtualize these device files based on a split device driver model. A major challenge is to translate guest-view of information into host-view of information, e.g. memory address translation, file descriptor management, and GPU Memory Management Unit (MMU) manipulation. The experimental results show that the proposed graphics virtualization technique achieved almost 84%-100% performance of native applications.

821-840hit(5768hit)