The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

781-800hit(5768hit)

  • A New Method of Translational Compensation for Spatial Precession Targets with Rotational Symmetry

    Rong CHEN  Cunqian FENG  Sisan HE  Yi RAO  

     
    LETTER-Analog Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    3061-3066

    The extraction of micro-motion parameters is deeply influenced by the precision of estimation on translational motion parameters. Based on the periodicity of micro-motion, the quadratic polynomial fitting is carried out among range delays to align envelope. The micro-motion component of phase information is eliminated by conjugate multiplication after which the translational motion parameters are estimated. Then the translational motion is precisely compensated through the third order polynomial fitting. Results of simulation demonstrate that the algorithm put forward here can realize the precise compensation for translational motion parameters even under an environment with low signal noise ratio (SNR).

  • Power-Effective File Layout Based on Large Scale Data-Intensive Application in Virtualized Environment

    Shunsuke YAGAI  Masato OGUCHI  Miyuki NAKANO  Saneyasu YAMAGUCHI  

     
    PAPER-Database system

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2761-2770

    In data centers, large numbers of computers are run simultaneously. These computers consume an enormous amount of energy. Several challenges related to this issue have been published. An energy-efficient storage management method that cooperates with applications was one effective approach. In this method, data and storage devices are managed using application support and the power consumption of storage devices is significantly decreased. However, existing studies do not take the virtualized environment into account. Recently, many data-intensive applications have been run in a virtualized environment, such as the cloud computing environment. In this paper, we focus on a virtualized environment wherein multiple virtual machines run on a physical computer and a data intensive application runs on each virtual machine. We discuss a method for reducing storage device power consumption using application support. First, we propose two storage management methods using application information. One method optimizes the inter-HDD file layout. This method removes frequently-accessed files from a certain HDD and switches the HDD to power-off mode. To balance loads and reduce seek distances, this method separates a heavily accessed file and consolidates files in a virtual machine with low access frequency. The other method optimizes the intra-HDD file layout, in addition to performing inter-HDD optimization. This method places frequently accessed files near each other. Second, we present our experimental results and demonstrate that the proposed methods can create sufficiently long HDD access intervals that power-off mode can be used, and thereby, reduce the power consumption of storage devices.

  • Energy Budget Formulation in Progress-Based Nearest Forwarding Routing Policy for Energy-Efficient Wireless Sensor Networks

    Sho SASAKI  Yuichi MIYAJI  Hideyuki UEHARA  

     
    PAPER-Wireless networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2808-2817

    A number of battery-driven sensor nodes are deployed to operate a wireless sensor network, and many routing protocols have been proposed to reduce energy consumption for data communications in the networks. We have proposed a new routing policy which employs a nearest-neighbor forwarding based on hop progress. Our proposed routing method has a topology parameter named forwarding angle to determine which node to connect with as a next-hop, and is compared with other existing policies to clarify the best topology for energy efficiency. In this paper, we also formulate the energy budget for networks with the routing policy by means of stochastic-geometric analysis on hop-count distributions for random planar networks. The formulation enables us to tell how much energy is required for all nodes in the network to forward sensed data in a pre-deployment phase. Simulation results show that the optimal topology varies according to node density in the network. Direct communication to the sink is superior for a small-sized network, and the multihop routing is more effective as the network becomes sparser. Evaluation results also demonstrate that our energy formulation can well approximate the energy budget, especially for small networks with a small forwarding angle. Discussion on the error with a large forwarding angle is then made with a geographical metric. It is finally clarified that our analytical expressions can obtain the optimal forwarding angle which yields the best energy efficiency for the routing policy when the network is moderately dense.

  • Network Function Virtualization: A Survey Open Access

    Malathi VEERARAGHAVAN  Takehiro SATO  Molly BUCHANAN  Reza RAHIMI  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    INVITED PAPER

      Pubricized:
    2017/05/16
      Vol:
    E100-B No:11
      Page(s):
    1978-1991

    The objectives of this survey are to provide an in-depth coverage of a few selected research papers that have made significant contributions to the development of Network Function Virtualization (NFV), and to provide readers insights into the key advantages and disadvantages of NFV and Software Defined Networks (SDN) when compared to traditional networks. The research papers covered are classified into four categories: NFV Infrastructure (NFVI), Network Functions (NFs), Management And Network Orchestration (MANO), and service chaining. The NFVI papers describe “framework” software that implement common functions, such as dynamic scaling and load balancing, required by NF developers. Papers on NFs are classified as offering solutions for software switches or middleboxes. MANO papers covered in this survey are primarily on resource allocation (virtual network embedding), which is an orchestrator function. Finally, service chaining papers that offer examples and extensions are reviewed. Our conclusions are that with the current level of investment in NFV from cloud and Internet service providers, the promised cost savings are likely to be realized, though many challenges remain.

  • Precise Indoor Localization Method Using Dual-Facing Cameras on a Smart Device via Visible Light Communication

    Yohei NAKAZAWA  Hideo MAKINO  Kentaro NISHIMORI  Daisuke WAKATSUKI  Makoto KOBAYASHI  Hideki KOMAGATA  

     
    PAPER-Vision

      Vol:
    E100-A No:11
      Page(s):
    2295-2303

    In this paper, we propose a precise indoor localization method using visible light communication (VLC) with dual-facing cameras on a smart device (mobile phone, smartphone, or tablet device). This approach can assist the visually impaired with navigation, or provide mobile-robot control. The proposed method is different from conventional techniques in that dual-facing cameras are used to expand the localization area. The smart device is used as the receiver, and light-emitting diodes on the ceiling are used as localization landmarks. These are identified by VLC using a rolling shutter effect of complementary metal-oxide semiconductor image sensors. The front-facing camera captures the direct incident light of the landmarks, while the rear-facing camera captures mirror images of landmarks reflected from the floor face. We formulated the relationship between the poses (position and attitude) of the two cameras and the arrangement of landmarks using tilt detection by the smart device accelerometer. The equations can be analytically solved with a constant processing time, unlike conventional numerical methods, such as least-squares. We conducted a simulation and confirmed that the localization area was 75.6% using the dual-facing cameras, which was 3.8 times larger than that using only the front-facing camera. As a result of the experiment using two landmarks and a tablet device, the localization error in the horizontal direction was less than 98 mm at 90% of the measurement points. Moreover, the error estimation index can be used for appropriate route selection for pedestrians.

  • Price-Based Power Allocation with Rate Proportional Fairness Constraint in Downlink Non-Orthogonal Multiple Access Systems

    Zi-fu FAN  Chen-chen WEN  Zheng-qiang WANG  Xiao-yu WAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:11
      Page(s):
    2543-2546

    In this letter, we investigate the price-based power allocation with rate proportional fairness constraint in downlink non-orthogonal multiple access (NOMA) systems. The Stackelberg game is utilized to model the interaction between the base station (BS) and users. The revenue maximization problem of the BS is first converted to rate allocation problem, then the optimal rate allocation for each user is obtained by variable substitution. Finally, a price-based power allocation with rate proportional fairness (PAPF) algorithm is proposed based on the relationship between rate and transmit power. Simulation results show that the proposed PAPF algorithm is superior to the previous price-based power allocation algorithm in terms of fairness index and minimum normalized user (MNU) rate.

  • An Incremental Simulation Technique Based on Delta Model for Lifetime Yield Analysis

    Nguyen Cao QUI  Si-Rong HE  Chien-Nan Jimmy LIU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:11
      Page(s):
    2370-2378

    As devices continue to shrink, the parameter shift due to process variation and aging effects has an increasing impact on the circuit yield and reliability. However, predicting how long a circuit can maintain its design yield above the design specification is difficult because the design yield changes during the aging process. Moreover, performing Monte Carlo (MC) simulation iteratively during aging analysis is infeasible. Therefore, most existing approaches ignore the continuity during simulations to obtain high speed, which may result in accumulation of extrapolation errors with time. In this paper, an incremental simulation technique is proposed for lifetime yield analysis to improve the simulation speed while maintaining the analysis accuracy. Because aging is often a gradual process, the proposed incremental technique is effective for reducing the simulation time. For yield analysis with degraded performance, this incremental technique also reduces the simulation time because each sample is the same circuit with small parameter changes in the MC analysis. When the proposed dynamic aging sampling technique is employed, 50× speedup can be obtained with almost no decline accuracy, which considerably improves the efficiency of lifetime yield analysis.

  • Subcarrier-Selectable Short Preamble for OFDM Channel Estimation in Real-Time Wireless Control Systems

    Theerat SAKDEJAYONT  Chun-Hao LIAO  Makoto SUZUKI  Hiroyuki MORIKAWA  

     
    PAPER-Communication Systems

      Vol:
    E100-A No:11
      Page(s):
    2323-2331

    Real-time and reliable radio communication is essential for wireless control systems (WCS). In WCS, preambles create significant overhead and affect the real-time capability since payloads are typically small. To shorten the preamble transmission time in OFDM systems, previous works have considered adopting either time-direction extrapolation (TDE) or frequency-direction interpolation (FDI) for channel estimation which however result in poor performance in fast fading channels and frequency-selective fading channels, respectively. In this work, we propose a subcarrier-selectable short preamble (SSSP) by introducing selectability to subcarrier sampling patterns of a preamble such that it can provide full sampling coverage of all subcarriers with several preamble transmissions. In addition, we introduce adaptability to a channel estimation algorithm for the SSSP so that it conforms to both fast and frequency-selective channels. Simulation results validate the feasibility of the proposed method in terms of the reliability and real-time capability. In particular, the SSSP scheme shows its advantage in flexibility as it can provide a low error rate and short communication time in various channel conditions.

  • High-Speed 3-D Electroholographic Movie Playback Using a Digital Micromirror Device Open Access

    Naoki TAKADA  Masato FUJIWARA  ChunWei OOI  Yuki MAEDA  Hirotaka NAKAYAMA  Takashi KAKUE  Tomoyoshi SHIMOBABA  Tomoyoshi ITO  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    978-983

    This study involves proposing a high-speed computer-generated hologram playback by using a digital micromirror device for high-definition spatiotemporal division multiplexing electroholography. Consequently, the results indicated that the study successfully reconstructed a high-definition 3-D movie of 3-D objects that was comprised of approximately 900,000 points at 60 fps when each frame was divided into twelve parts.

  • esVHO: Energy Saving Vertical Handover Extension for Local SDN in Non-Interconnected Environment

    Toan Nguyen DUC  Eiji KAMIOKA  

     
    PAPER

      Pubricized:
    2017/05/16
      Vol:
    E100-B No:11
      Page(s):
    2027-2037

    Wireless technologies that offer high data rate are generally energy-consuming ones while low-energy technologies commonly provide low data rate. Both kinds of technologies have been integrated in a single mobile device for different services. Therefore, if the service does not always require high data rate, the low energy technology, i.e., Bluetooth, can be used instead of the energy-consuming one, i.e., Wi-Fi, for saving energy. It is obvious that energy savings are maximized by turning the unused technology off. However, when active sessions of ongoing services migrate between different technologies, the network-layer connectivity must be maintained, or a vertical handover (VHO) between different networks is required. Moreover, when the networks are not interconnected, the VHO must be fully controlled by the device itself. The device typically navigates traffic through the firmware of the wireless network interface cards (WNIC) using their drivers, which are dependent on the vendors. To control the traffic navigation between WNICs without any modification of the WNICs' drivers, Software-Defined Networking (SDN) can be applied locally on the mobile device, the so called local SDN. In the local SDN architecture, a local SDN controller (SDNC) is used to control a virtual OpenFlow switch, which turns WNICs into its switch ports. Although the SDNC can navigate the traffic, it lacks the global view of the network topology. Hence, to correctly navigate traffic in a VHO process, an extended SDN controller (extSDNC) was proposed in a previous work. With the extSDNC, the SDNC can perform VHO based on a link layer trigger but with a significant packet loss rate. Therefore, in this paper, a framework named esVHO is proposed that executes VHO at the network layer to reduce the packet loss rate and reduce energy consumption. Experiments on VHO performance prove that esVHO can reduce the packet loss rate considerably. Moreover, the results of an energy saving experiment show that esVHO performs high energy saving up to 4.89 times compared to the others.

  • Possibility of Metal-Oxide-Nitride-Oxide-Semiconductor Memories for Long Lifespan Archive Memories

    Hiroki SHIRAKAWA  Keita YAMAGUCHI  Masaaki ARAIDAI  Katsumasa KAMIYA  Kenji SHIRAISHI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E100-C No:10
      Page(s):
    928-933

    We demonstrate on the basis of ab initio calculations that metal-oxide-nitride-oxide-semiconductor (MONOS) memory is one of the most promising future high-density archive memories. We find that O related defects in a MONOS memory cause irreversible structural changes to the SiO2/Si3N4 interface at the atomistic level during program/erase (P/E) cycles. Carrier injection during the programming operation makes the structure energetically very stable, because all the O atoms in this structure take on three-fold-coordination. The estimated lifespan of the programmed state is of the order of a thousand years.

  • Toward More Secure and Convenient User Authentication in Smart Device Era Open Access

    Yasushi YAMAZAKI  Tetsushi OHKI  

     
    INVITED PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2391-2398

    With the rapid spread of smart devices, such as smartphones and tablet PCs, user authentication is becoming increasingly important because various kinds of data concerning user privacy are processed within them. At present, in the case of smart devices, password-based authentication is frequently used; however, biometric authentication has attracted more attention as a user authentication technology. A smart device is equipped with various sensors, such as cameras, microphones, and touch panels, many of which enable biometric information to be obtained. While the function of biometric authentication is available in many smart devices, there remain some problems to be addressed for more secure and convenient user authentication. In this paper, we summarize the current problems with user authentication on smart devices and propose a novel user authentication system based on the concept of context awareness to resolve these problems. We also present our evaluation of the performance of the system by using biometric information that was acquired from smart devices. The evaluation demonstrates the effectiveness of our system.

  • A 15GHz-Band 4-Channel Transmit/Receive RF Core-Chip for High SHF Wide-Band Massive MIMO in 5G

    Koji TSUTSUMI  Takaya MARUYAMA  Wataru YAMAMOTO  Takanobu FUJIWARA  Tatsuya HAGIWARA  Ichiro SOMADA  Eiji TANIGUCHI  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    825-832

    A 15GHz-band 4-channel transmit/receive RF core-chip is presented for high SHF wide-band massive MIMO in 5G. In order to realize small RF frontend for 5G base stations, both 6bit phase shifters (PS) and 0.25 dB resolution variable gain amplifiers (VGA) are integrated in TX and RX paths of 4-channels on the chip. A PS calibration technique is applied to compensate the error of 6bit PS caused by process variations. A common gate current steering topology with tail current control is used for VGA to enhance the gain control accuracy. The 15GHz-band RF core-chip fabricated in 65 nm CMOS process achieved phase control error of 1.9deg. rms., and amplitude control error of 0.23 dB. rms.

  • Timed Model-Based Formal Analysis of a Scheduler of Qplus-AIR, an ARINC-653 Compliance RTOS

    Sanghyun YOON  Dong-Ah LEE  Eunji PAK  Taeho KIM  Junbeom YOO  

     
    LETTER-Software System

      Pubricized:
    2017/06/23
      Vol:
    E100-D No:10
      Page(s):
    2644-2647

    Qplus-AIR is a real-time operating system for avionics, and its safety and correctness should be analyzed and guaranteed. We performed model checking a version of Qplus-AIR with the Times model checker and identified one abnormal case that might result in safety-critical situations.

  • Experimental Study on a 5.8 GHz Power-Variable Phase-Controlled Magnetron

    Bo YANG  Tomohiko MITANI  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    901-907

    We developed a 5.8 GHz power-variable phase-controlled magnetron (PVPCM) which controls the phase of magnetron output by a phase shifter and controls the power by the anode current of the magnetron. This method is different from the previous 2.45 GHz phase-controlled magnetron which utilizes an injection method and a phase locked loop by the anode current, since the frequency of 5.8 GHz magnetron hardly changes with the anode current. Our experiments show that the developed 5.8 GHz PVPCM had a variable output power with 1% power stability from 160 W to 329 W, the phase accuracy was nearly ±1°, and the response time was less than 100 µs. Stable output power, high phase-controlled accuracy, and fast response speed microwave sources based on the PVPCMs are suitable for phased array system for wireless power transfer.

  • A Joint Interference Suppression and Multiuser Detection Scheme Based on Eigendecomposition for Three-Cell Multiple Relay Systems

    Ahmet Ihsan CANBOLAT  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1939-1945

    To suppress intercell interference for three-cell half-duplex relay systems, joint interference suppression and multiuser detection (MUD) schemes that estimate weight coefficients by the recursive least-squares (RLS) algorithm have been proposed but show much worse bit error rate (BER) performance than maximum likelihood detection (MLD). To improve the BER performance, this paper proposes a joint interference suppression and MUD scheme that estimates the weight coefficients by eigenvalue decomposition. The proposed scheme carries the same advantages as the conventional RLS based schemes; it does not need channel state information (CSI) feedback while incurring much less amount of computational complexity than MLD. In addition, it needs to know only two out of three preambles used in the system. Computer simulations of orthogonal frequency-division multiplexing (OFDM) transmission under three-cell and frequency selective fading conditions are conducted. It is shown that the eigendecomposition-based scheme overwhelmingly outperforms the conventional RLS-based scheme although requiring higher computational complexity.

  • Improving Fairness in Wireless Ad Hoc Networks by Channel Access Sensing at Link Layer and Packet Rate Control

    Nguyen Minh TUAN  Kohei WATABE  Pham Thanh GIANG  Kenji NAKAGAWA  

     
    PAPER-Network

      Pubricized:
    2017/04/14
      Vol:
    E100-B No:10
      Page(s):
    1818-1826

    Wireless Ad hoc networks have been rapidly developed in recent years since they promise a wide range of applications. However, their structures, which are based on the IEEE 802.11 standard, cause a severe unfairness problem in bandwidth sharing among different users. This is an extreme drawback because in wireless ad hoc networks, all users need to be treated fairly regardless of their geographical positions. In this paper, we propose a method to improve the fairness among flows by sensing channel access of other nodes based on the information obtained at the link layer and then, controlling the packet sending rate from the link layer to the MAC layer and the dequeue rate from the queue. Simulation results show that the proposed method achieves a better fairness with a good total throughput compared to conventional methods.

  • Improvement in Efficiency of Underwater Wireless Power Transfer with Electric Coupling

    Yasumasa NAKA  Kyohei YAMAMOTO  Takuma NAKATA  Masaya TAMURA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    850-857

    This paper focuses on underwater wireless power transfer with electric coupling. First, the maximum available efficiency is derived by using the S-parameters of the parallel plate coupler. The frequency which represents the maximal value of the efficiency is revealed. Further, the elevation in the efficiency in association with a reduction of the electrode size is found. It is clarified that the elevation depends on the characteristic of the water dielectric loss. From these results, the optimal electrode size that obtains the maximal value of the efficiency is provided. Finally, we fabricate the couplers by utilizing the optimal frequency and the electrode size. The efficiency of 75.8% under water is achieved.

  • Undesired Radiation Suppression Technique for Distributed Array Antenna by Antenna Positioning and Delay Signal Processing

    Kouhei SUZUKI  Hideya SO  Daisuke GOTO  Yoshinori SUZUKI  Fumihiro YAMASHITA  Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  Takatoshi SUGIYAMA  

     
    PAPER-Satellite Communications

      Pubricized:
    2017/03/01
      Vol:
    E100-B No:10
      Page(s):
    1959-1967

    This paper introduces distributed array antenna (DAA) systems that offer high antenna gain. A DAA consists of several small antennas with improved antenna gain. This paper proposes a technique that suppresses the off-axis undesired radiation and compensates the time delay by combining signal processing with optimization of array element positioning. It suppresses the undesired radiation by compensating the delay timing with high accuracy and deliberately generating the inter-symbol interference (ISI) in side-lobe directions. Computer simulations show its effective suppression of the equivalent isotropic radiated power (EIRP) pattern and its excellent BER performance.

  • On Locality of Some Ternary Linear Codes of Dimension 6

    Ruipan YANG  Ruihu LI  Luobin GUO  Qiang FU  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:10
      Page(s):
    2172-2175

    Locally repairable code (LRC) can recover any codeword symbol failure by accessing a small number of other symbols, which can increase the efficiency during the repair process. In a distributed storage system with locally repairable codes, any node failure can be rebuilt by accessing other fixed nodes. It is a promising prospect for the application of LRC. In this paper, some methods of constructing matrices which can generate codes with small locality will be proposed firstly. By analyzing the parameters, we construct the generator matrices of the best-known ternary linear codes of dimension 6, using methods such as shortening, puncturing and expansion. After analyzing the linear dependence of the column vectors in the generator matrices above, we find out the locality of the codes they generate. Many codes with small locality have been found.

781-800hit(5768hit)