The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LER(1184hit)

1081-1100hit(1184hit)

  • Programming and Program-Verification Methods for Low-Voltage Flash Memories Using a Sector Programming Scheme

    Katsutaka KIMURA  Toshihiro TANAKA  Masataka KATO  Tetsuo ADACHI  Keisuke OGURA  Hitoshi KUME  

     
    PAPER

      Vol:
    E78-C No:7
      Page(s):
    832-837

    Programming and program-verification methods for low-voltage flash memories using the Fowler-Nordheim tunneling mechanism for both programming and erasure are described. In these memories, a great many memory cells on a selected word line, such as 512-bytes worth of cells, are programmed at the same time for high-speed programming. The bit-by-bit programming/verification method can precisely control threshold-voltage deviation of programmed memory cells on the selected word line for low voltage operation. By using an internal program-end detection circuit, the completion of program mode can be checked for in one clock cycle, without reading out 512-bytes of data from the memory chip to the external controller. Moreover, the variable pulse-width programming method reduces the total number of verifications.

  • The Firing Squad Synchronization Problem in Defective Cellular Automata

    Martin KUTRIB  Roland VOLLMAR  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E78-D No:7
      Page(s):
    895-900

    The firing squad synchronization problem is considered for defective cellular automata. A lower bound of time tf for the problem is derived. The state complexity to solve the problem is investigated and it is shown that the state set has to be arbitrary large to obtain solutions of time complexity (n). For memory-augmented defective cellular automata a tf-time solution is given.

  • A Learning Fuzzy Network and Its Applications to Inverted Pendulum System

    Zheng TANG  Yasuyoshi KOBAYASHI  Okihiko ISHIZUKA  Koichi TANNO  

     
    PAPER-Systems and Control

      Vol:
    E78-A No:6
      Page(s):
    701-707

    In this paper, we propose a learning fuzzy network (LFN) which can be used to implement most of fuzzy logic functions and is much available for hardware implementations. A learning algorithm largely borrowed from back propagation algorithm is introduced and used to train the LFN systems for several typical fuzzy logic problems. We also demonstrate the availability of the LFN hardware implementations by realizing them with CMOS current-mode circuits and the capability of the LFN systems by testing them on a benchmark problem in intelligent control-the inverted pendulum system. Simulations show that a learning fuzzy network can be realized with the proposed LFN system, learning algorithm, and hardware implementations.

  • Development of Liquid Helium-Free Superconducting Magnet

    Junji SAKURABA  Mamoru ISHIHARA  Seiji YASUHARA  Kazunori JIKIHARA  Keiichi WATAZAWA  Tsuginori HASEBE  Chin Kung CHONG  Yutaka YAMADA  Kazuo WATANABE  

     
    INVITED PAPER-Applications of small-size high field superconducting magnet

      Vol:
    E78-C No:5
      Page(s):
    535-541

    Cryocooler cooled superconducting magnets using Bismuth based high-Tc current leads have been successfully demonstrated. The magnets mainly consisted of a superconducting coil, current leads and a radiation shield which are cooled by a two stage Gifford-McMahon cryocooler without using liquid helium. Our first liquid helium-free 4.6 T (Nb, Ti)3Sn superconducting magnet with a room temperature bore of 38 mm operated at 11 K has recorded a continuous operation at 3.7 T for 1,200 hours and total cooling time over 10,000 hours without trouble. As a next step, we constructed a (Nb, Ti)3Sn liquid helium-free superconducting magnet with a wider room temperature bore of 60 mm. The coil temperature reached 8.3 K in 37 hours after starting the cryocooler. The magnet generated 5.0 T at the center of the 60 mm room temperature bore at an operating current of 140 A. An operation at a field of 5 T was confirmed to be stable even if the cryocooler has been stopped for 4 minutes. These results show that the liquid helium-free superconducting magnets can provide an excellent performance for a new application of the superconducting magnet.

  • Improved Sample Complexity Bounds for Parameter Estimation

    Jun-ichi TAKEUCHI  

     
    PAPER-Computational Learning Theory

      Vol:
    E78-D No:5
      Page(s):
    526-531

    Various authors have proposed probabilistic extensions of Valiant's PAC (Probably Approximately Correct) learning model in which the target to be learned is a (conditional) probability distribution. In this paper, we improve upon the best known upper bounds on the sample complexity of the parameter estimation part of the learning problem for distributions and stochastic rules over a finite domain with respect to the Kullback-Leibler divergence (KL-devergence). In particular, we improve the upper bound of order O(1/ε2) due to Abe, Takeuchi, and Warmuth to a bound of order O(1/ε). In obtaining our results, we made use of the properties of a specific estimator (slightly modified maximum likelihood estimator) with respect to the KL-divergence, while previously known upper bounds were obtained using the uniform convergence technique.

  • All-Optical Switching Property of an MQW-Sandwich Nonlinear Directional Coupler with Nonlinear Losses

    Naomichi OKAMOTO  Xue Jun MENG  Okihiro SUGIHARA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:3
      Page(s):
    299-303

    We analyze all-optical switching property of a nonlinear directional coupler (NLDC) having an MQW coupling layer with both nonlinear and linear losses, and examine the effect of nonlinear losses. We use the Galerkin finite element method accompanied by a prodictor-corrector algorithm. The propagation loss along the strongly-coupled NLDC decreases with increasing nonlinear absorption coefficient due to saturation in absorption. A propagation loss of 8.18 dB or 2.38 dB in the bar state of the cross state is much smaller than the bulk loss of MQW structure which exceeds 50 dB. The nonlinear losses lengthen the coupling length and bring it close to that of a lossfree NLDC, while the linear losses shorten. It is found that the property of the cross state is greatly improved by counting the nonlinear losses: The cross-state output power and the output power ratio of two waveguides increase, and the cross state input power, that is, the switching power decreases.

  • Effects of the Loop Birefringence on Fiber Loop Polarizers Using a Fused Taper Coupler

    Katsumi MORISHITA  

     
    LETTER-Opto-Electronics

      Vol:
    E78-C No:3
      Page(s):
    311-314

    The optical characteristics of the fiber loop polarizer are investigated considering the birefringence in the fiber loop. The experimental and the theoretical spectrum transmissions agree well with each other. The extinction ratio and the insertion loss of the fiber polarizers have been improved for practical use.

  • An On-Line Scheduler for ASIC Manufacturing Line Management

    Tadao TAKEDA  Satoshi TAZAWA  Kou WADA  Eisuke ARAI  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    241-247

    An on-line scheduler for ASIC manufacturing line management has been developed. The parameters in the schedule models and the dynamic priority curve in the schedule algorithm were adjusted to obtain schedules well-suited to practical ASIC line management and control. The scheduler is connected to the user interface control module of our ASIC CIM system. In order to facilitate on-line scheduling, we clarify the performance requirements of the computer used for the scheduler with respect to the line scale. Using a current EWS, the scheduler can easily make a one-day schedule for a small-scale line with an annual throughput of less than 1,000 lots within 10 minutes. To cope with larger-scale lines, the multiple scheduling method allows schedules to be produced quickly and efficiently. Therefore, the scheduler can respond flexibly to changes in production plan and line resources and the control delivery date of each lot.

  • Media Scheduler for AAL under ATM-Based Network Environments

    Chan-Hyun YOUN  Jun-ichi KUDOH  Yoshiaki NEMOTO  

     
    PAPER-Switching and Communication Processing

      Vol:
    E78-B No:3
      Page(s):
    324-335

    In this paper, we propose the media scheduler employing an adaptive estimator, which uses a posteriori information of data traffic characteristics to facilitate scheduling, when available, to provide on-line scheduling of dynamic scene change based on its statistical characteristics. Especially, a new adaptive scheduling scheme showed good persistent to the arrival message with bursty characteristics. And we confirmed the performance through the computer simulation when QOS requirements are given.

  • A Voltage Controlled Astable Multivibrator with Miller-Integrator

    Hirofumi SASAKI  Kuniaki FUJIMOTO  Mitsutoshi YAHARA  

     
    LETTER

      Vol:
    E78-A No:2
      Page(s):
    196-198

    In this letter, we propose a simple voltage controlled oscillator (VCO) with circuitry combining a Miller integrator and an RS flip-flop circuit. With the VCO, the control voltage can be varied over a broad range, and the oscillation frequency varies in proportion to the control voltage. The maximum voltage is up to 1000 times the minimum, and the calculated design values and measured values agree well. This VCO can be applied to FM modulators, FSK modulators, and other systems.

  • Formation of Black Membrane Using a Microfabricated Orifice

    Masao WASHIZU  Seiichi SUZUKI  Osamu KUROSAWA  Hideaki KURAHASHI  Akira KATOH  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    157-161

    A black membrane is a biological-membrane analogue, i.e. a phospholipid bilayer membrane, artificially formed on an orifice immersed in water. It is used to investigate the properties of the membrane itself and channels embedded therein. In this paper, microfabrication techniques are applied to fabricate the orifice, and a glass substrate is isotropically etched to define the orifice geometry. The periphery of the orifice was patterned with aminosilane to anchor the membrane. The remainder part was coated with fluorosilane to make the surface hydrophobic and to prevent adsorption of channel-forming molecules. We demonstrated experimentally that a stable and reproducible membrane is easily obtainable using the orifice.

  • Defect-Tolerant WSI File Memory System Using Address Permutation for Spare Allocation

    Eiji FUJIWARA  Masaharu TANAKA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E78-D No:2
      Page(s):
    130-137

    This paper proposes a large capacity high-speed file memory system implemented with wafer scale RAM which adopts a novel defect-tolerant technique. Based on set-associative mapping, the defective memory blocks on the wafer are repaired by switching with the spare memory blocks. In order to repair the clustered defective blocks, these are permuted logically with other blocks by adding some constant value to the input block addresses. The defective blocks remaining even after applying the above two methods are repaired by using error control codes which correct soft errors induced by alpha particles in an on-line operation as well as hard errors induced by the remaining defective blocks. By using the proposed technique, this paper demonstrates a large capacity high-speed WSI file memory system implemented with high fabrication yield and low redundancy rate.

  • Numerical Analysis of an Optical X Coupler with a Nonlinear Dielectric Region

    Hirohisa YOKOTA  Koichi KIMURA  Sadao KURAZONO  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    61-66

    For an application to the optical signal processing devices, we propose the optical X coupler which consists of two bending waveguides and a nonlinear dielectric region. To analyze this structure accurately we utilized the iterative finite difference beam propagation method (iterative FD-BPM). In this paper the formulation of the iterative FD-BPM for one wave and two waves cases are presented, respectively. We investigate following two cases. First, we consider the case that the light is launched into one of the input ports. We calculate the evolutions of the field amplitude and the transmission characteristics for the input power. Second, we consider the case that the signal light with the constant power is launched into one of the input ports and that the control light with the wavelength different from that of the signal light is launched into another input port. We calculate the evolutions of the field amplitude and the transmission characteristics of the signal light for the power of control light. As a result of the analysis, we show that all-optical switching operation is possible in the proposed structure.

  • A Beam Adaptive Frame for Finite-Element Beam-Propagation Analysis

    Ikuo TAKAKUWA  Akihiro MARUTA  Masanori MATSUHARA  

     
    LETTER-Opto-Electronics

      Vol:
    E77-C No:12
      Page(s):
    1990-1992

    A beam adaptive frame for finite-element beam-propagation analysis is proposed. The width of the frame can be adapted itself to either the guiding structure or the propagating beam in optical circuits, so the size of the computational window can be reduced.

  • A Fast Vectorized Maze Routing Algorithm on a Supercomputer

    Yoshio MIKI  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2067-2075

    This paper presents a fast and practical routing algorithm implemented on a supercomputer. In previously reported work, routing has been accelerated by executing the maze algorithm on parallel processing elements. However, although many parallel algorithms and special architectures have been introduced, practical aspects have not been addressed. We therefore present a novel approach that uses a vector processor as a routing accelerator and a wavefront control algorithm in order to avoid the wasteful searches that often occur in industrial routing problems. Experimental results that show the performance of a supercomputer using these algorithms is equivalent to over 1800 VAXMIPS, the fastest yet reported for routing accelerators. Results with industrial data also prove the validity of our approach.

  • A Novel Optical Polarization Splitter Using a Dimensionally Tapered Velocity Coupler

    Masashi HOTTA  Masahiro GESHIRO  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1722-1725

    A new polarization splitter at optical frequencies is proposed. The basic structure of the device is a tapered velocity coupler which is composed of a straight and a dimensionally tapered slab waveguide on a LiNbO3 substrate. The numerical results obtained with the finite difference method indicate that extinction ratios of polarization less than 2% for both TE and TM modes are possible of realization under moderate control voltages and that the splitting characteristics are stable over a wide range of frequencies.

  • A Variable Optical Beam Splitter Utilizing a Tapered Velocity Coupler

    Masahiro GESHIRO  Masashi HOTTA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1731-1734

    A new type of variable beam splitter at optical frequencies is proposed. The basic structure of the device utilizes a tapered velocity coupler which is composed of a center slab waveguide of constant-thickness, constant-index type and two identical outer slab waveguides of constant-thickness, variable-index type. The coupler is assumed to be fabricated on a LiNbO3 substrate, whith an external electric field applied in parallel with the optical axis. The numerical results obtained with the finite difference method show that a wide range of splitting ratios can be obtained with moderate drive voltages and that the splitting characteristics are stable over a wide range of frequencies.

  • Resonance Characteristics of Circularly Propagating Mode in a Coaxial Dielectric Resonator

    Qing HAN  Yoshinori KOGAMI  Yoshiro TOMABECHI  Kazuhito MATSUMURA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1747-1751

    A three-dimensional analysis of Whispering-Gallery modes (W. G. modes) in a coaxial dielectric resonator is proposed and presented. The coaxial dielectric resonator is constructed from a lossy dielectric disk and ring which have diameters of several tens times as large as wavelength. Eigenvalue equations of the W. G. modes are derived rigorously from field expressions and boundary conditions. The resonant frequencies, unloaded Q values and field distributions are calculated numerically from the eigenvalue equations. These calculated results are in good agreement with experimental ones for an X band model. As a result, it is shown that a considerable quantity of modal energy can be confined in a loss-less gap between the disk and ring, and then the unloaded Q value is higher than that of a conventional dielectric disk and ring resonator.

  • Coupled-Mode Analysis of a Symmetric Nonlinear Directional Coupler Using a Singular Perturbation Scheme

    Kiyotoshi YASUMOTO  Naoto MAEKAWA  Hiroshi MAEDA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1771-1775

    A coupled-mode analysis of a symmetric planar nonlinear directional coupler (NLDC) is presented by using a singular perturbation scheme. The effects of linear coupling and nonlinear modification of refractive index are treated to be small perturbations, and the modal fields of isolated linear waveguides are employed as the basis of propagation model. The self-consistent first-order coupled-mode equations governing the transfer of optical power along the NLDC are obtained in analytically closed form. It is shown that tha critical power for optical switching derived from the coupled-mode equations is in close agreement with that obtained by the numerical analysis using the finite difference beam propagation mathod.

  • Extinction Ratio Adjustment for the Coupler-Type Wavelength Demultiplexer Made by K+-Ion Diffused Waveguides

    Kiyoshi KISHIOKA  Yoshinori YAMAMOTO  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1752-1758

    In this paper, a novel coupler-type wavelength demultiplexer composed of the K+-ion diffused waveguides, which has an adjustment function for optimizing the diffusion depth, is proposed to achieve reliably the high extinction ratio. The optimization in the diffusion depth is made by repeating the K+-ion diffusion and extinction-ratio measurement alternatively, and the high extinction ratios more than 20 dB are measured reliably at both operation wavelengths of 0.6328 and 0.83 µm. Experimental results on the polarization dependence in the extinction-ratio adjustment are also reported.

1081-1100hit(1184hit)