The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LER(1184hit)

1141-1160hit(1184hit)

  • A Concurrent Fault Detection Method for Instruction Level Parallel Processors

    Alberto PALACIOS PAWLOVSKY  Makoto HANAWA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    755-762

    This paper describes a new method for the concurrent detection of faults in instruction level parallel (ILP) processors. This method uses the No OPeration (NOP) instruction slots that under branches, resource conflicts and some kind of data dependencies fill some of the pipelines (stages) in an ILP processor. NOPs are replaced by the copy of an effective instruction running in another pipeline. This allows the checking of the pipelines running the original instruction and its copy (ies), by the comparison of the outputs of their stages during the execution of the replicated instruction. We show some figures obtained for the application of this method to a two-pipeline superscalar processor.

  • An Application of Regular Temporal Logic to Verification of Fail-Safeness of a Comparator for Redundant System

    Kazuo KAWAKUBO  Hiromi HIRAISHI  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    763-770

    In this paper we propose a method of formal verfication of fault-tolerance of sequential machines using regular temporal logic. In this method, fault-tolerant properties are described in the form of input-output sequences in regular temporal logic formulas and they are formally verified by checking if they hold for all possible input-output sequences of the machine. We concretely illustrate the method of its application for formal verification of fail-safeness with an example of a comparator for redundant system. The result of verification shows effectiveness of the proposed method.

  • Compensation for the Double-Talk Detection Delay in Echo Canceller Systems

    Kensaku FUJII  Juro OHGA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1143-1146

    This letter presents a new algorithm for echo cancellers, which prevents the reduction of echo return loss due to a double-talk. The essence of the algorithm is to introduce signal delays to avoid the reduction. A convergence condition in the algorithm was examined by using the IIR filter expression of the NLMS algorithm, and it was concluded that the IIR filter should be a low pass filter with unity gain. The condition is accomplished by selecting a small step gain.

  • Evaluations for Estimation of an Information Source Based on State Decomposition

    Joe SUZUKI  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:7
      Page(s):
    1240-1251

    This paper's main objective is to analyze several procedures which select the model g among a set G of stochastic models to minimize the value of an information criterion in the form of L(g)H[g](zn)+(k(g)/2)c(n), where zn is the n observed data emitted by an information source θ which consists of the model gθ∈G and k(gθ) mutually independent stochastic parameters in the model gθ∈G, H[g](zn) is (-1) (the maximum log likelihood value of the data zn with respect to a model g∈G), and c(n) is a predetermined function (penalty function) of n which controls the amount of penalty for increasing the model size. The result is focused on specific performances when the information criteria are applied to the framework of so-called state decomposition. Especially, upper bounds are derived of the following two performance measures for each penalty function c(n): the error probability of the model selection, and the average Kullback-Leibler information between the true information source and the estimated information source.

  • Very Small MMIC Variable Frequency and Q Factor Active Bandpass Filters Using Novel Positive and Negative Feedback Design Techniques

    Hideo SUWAKI  Takashi OHIRA  

     
    PAPER

      Vol:
    E76-C No:6
      Page(s):
    919-924

    This paper presents newly developed very small MMIC bandpass filters along with novel positive and negative feedback techniques. In order to maintain the expected Q factor without unwanted oscillations in the positive feedback loop, the unity-coupler principle is proposed to stabilize the constituent amplifier. A prototype bandpass filter is monolithically integrated in a very small area of only 0.1 mm2 on a GaAs substrate. A sharp factor as high as 5.6/1-30 dB is achieved near the frequency range of 1 GHz. The other technique presented in this paper is to achieve the bandpass function without using any positive feedback. This is negative feedback consisting of feedback elements with the unique variable transfer function of b/(1as). A variable bandpass filter based on this design concept is also fabricated in a 1.21.3 mm2 area on a GaAs substrate. It has both a varactor and varistor integrated in the circuit, resulting in an independently controllable center frequency and Q factor. It is shown experimentally that the Q factor is controllable over a remarkable range of 20 to 400 and the center frequency is broader than 100 MHz at the 1 GHz band. By cascading two of the fabricated MMIC chips, a forth-order frequency response is successfully obtained along with a 35-40 dB forward gain and an in-band gain flatness of 0.35 dB.

  • Safety Control of Power Press by Using Fail-Safe Multiple-Valued Logic

    Masayoshi SAKAI  Masakazu KATO  Koichi FUTSUHARA  Masao MUKAIDONO  

     
    PAPER-Fail-Safe/Fault Tolerant

      Vol:
    E76-D No:5
      Page(s):
    577-585

    This paper first clarifies the logic construction of safety control for the operation of a power press and then describes fail-safe dual two-rail system signal processing and fail-safe multiple-valued logic operations as methods for achieving this control as a fail-safe system. It finally shows a circuit for generating fail-safe two-rail run button signals based on ternary logic for concrete operation of the power press and an operation control circuit for confirming brake performance for each cycle of slide operation by using the run button signals. The control circuit uses such multiple-valued logic operations that binary logic signals that do not erroneously go logic 1 are added to a multiple-valued logic signal and the multiple-valued logic signal is converted to a binary logic signal that does not erroneously go logic 1 by a threshold operation.

  • Optimization of Pseudo-Kronecker Expressions Using Multiple-Place Decision Diagrams

    Tsutomu SASAO  

     
    PAPER-Logic Design

      Vol:
    E76-D No:5
      Page(s):
    562-570

    This paper presents an optimization method for pseudo-Kronecker expressions of p-valued input two-valued output functions by using multi-place decision diagrams for p2 and p4. A conventional method using extended truth tables requires memory of O (3n) to simplify an n-variable expression, and is only practical for functions of up to n14 variables when p2. The method presented here utilizes multi-place decision diagrams, and can optimize considerably larger problems. Experimental results for up to n39 variables are shown.

  • Unsupervised Learning of 3D objects Conserving Global Topological Order

    Jinhui CHAO  Kenji MINOWA  Shigeo TSUJII  

     
    PAPER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    749-753

    The self-organization rule of planar neural networks has been proposed for learning of 2D distributions. However, it cannot be applied to 3D objects. In this paper, we propose a new model for global representation of the 3D objects. Based on this model, global topology reserving self-organization is achieved using parallel local competitive learning rule such as Kohonen's maps. The proposed model is able to represent the objects distributively and easily accommodate local features.

  • Fault Tolerant Properties and a Fault-Checking Method of Fuzzy Control

    Hiroshi ITO  Takashi MATSUBARA  Takakazu KUROKAWA  Yoshiaki KOGA  

     
    PAPER-Fail-Safe/Fault Tolerant

      Vol:
    E76-D No:5
      Page(s):
    586-593

    Generally it is said that a fuzzy control system has fault tolerant properties, but it is not clearly studied. In this paper, first, the influence of faults in fuzzy control systems is examined. Errors given by fault simulation are not negligible. However, no fault detecting method is applied in the realized fuzzy control systems. Then a fault-checking method to detect faults is proposed in this paper.

  • High Efficiency Erbium-Doped Fibers and High Performance Optical Components for Optical Fiber Amplifiers

    Hiroo KANAMORI  Akira URANO  Masayuki SHIGEMATSU  Tomonori KASHIWADA  Masahiro HAMADA  Shigeru HIRAI  Hiroshi SUGANUMA  Masayuki NISHIMURA  

     
    PAPER

      Vol:
    E76-B No:4
      Page(s):
    375-381

    By optimizing the structure of erbium-doped fibers, high efficiency such as a gain coefficient of 6.3dB/mW, or a slope efficiency of 92.6% have been realized with very flat wavelength dependence. Though the optimized structure has high NA, the splice loss with standard fibers can be lowered by the additional arc technique. The carbon coated fiber with a fatigue parameter over 150 guarantees the reliability, even when wounded on a small coil. In-line isolators and WDM couplers have been also developed. An amplifier module has been assembled, resulting in an output power more than +16dBm owing to the high performance of each component.

  • Design of Robust-Fault-Tolerant Multiple-Valued Arithmetic Circuits and Their Evaluation

    Takeshi KASUGA  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    428-435

    Robust-fault tolerance is a property that a computational result becomes nearly equal to the correct one at the occurrence of faults in digital system. There are many cases where the safety of digital control systems can be maintained if the property is satisfied. In this paper, robust-fault-tolerant three-valued arithmetic modules such as an adder and a multiplier are proposed. The positive and negative integers are represented by the number of 1's and 1's, respectively. The design concept of the arithmetic modules is that a fault makes linearly additive effect with a small value to the final result. Each arithmetic module consists of identical submodules linearly connected, so that multi-stage structure is formed to generate the final output from the last submodule. Between the input and output digits in the submodule some simple functional relation is satisfied with respect to the number of 1's and 1's. Moreover, the output digit value depends on very small portion of the submodules including the input digits. These properties make the linearly additive effect with a small value to the final result in the arithmetic modules even if multiple faults are occurred at the input and output of any gates in the submodules. Not only direct three-valued representation but also the use of three-valued logic circuits is inherently suitable for efficient implementation of the arithmetic VLSI system. The evaluation of the robust-fault-tolerant three-valued arithmetic modules is done with regard to the chip size and the speed using the standard CMOS design rule. As a result, it is made clear that the chip size can be greatly reduced.

  • LSI Implementation and Safety Verification of Window Comparator Used in Fail-Safe Multiple-Valued Logic Operations

    Masakazu KATO  Masayoshi SAKAI  Koji JINKAWA  Koichi FUTSUHARA  Masao MUKAIDONO  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    419-427

    A fail-safe logic operation refers to such a processing operation that the output assumes the logical value zero when the operation circuit fails. The fail-safe multiple-valued logic operation is proposed as one method of logic operation. Section 2 defines the fail-asfe multiple-valued logic operation and presents an example of method for accomplishing the fail-safe multiple-valued logic operation. Section 3 describes the method of designing a fail-safe threshold operation device (window comparator) as basic device in the fail-safe multiple-valued logic operation in consideration of LSI implementation and shows an example of prototype fail-safe window comparator. This operation device has higher and lower thresholds. It oscillates and produces an operational output signal only when the input signal level falls between the higher and lower thresholds. Unless the fail-safe window comparator is supplied with input signals of higher voltage than the power supply voltage, it dose not form a feedbadk loop as required for it to oscillate. This characteristic prevents the device from erroneously producing an output signal when any failure occurs in the amplifiers comprising the oscillation circuit. The window comparator can be built as a fail-safe threshold operation device. The fail-safe characteristic is utilized in its LSI implementation. Section 4 verifies the fail-safe property of the prortotype fail-safe window comparator. It is shown that even when the LSI develops failures not evident from outsid (latent failures), it does not lose the operational function and maintains the fail-safe characteristic.

  • Modularization and Processor Placement for DSP Neo-Systolic Array

    Kazuhito ITO  Kesami HAGIWARA  Takashi SHIMIZU  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    349-361

    A further study on a VLSI system compiler, named VEGA (VLSI Embodiment for General Algorithms), is presented. It maps a general digital signal processing algorithm onto a neo-systolic array, which is a VLSI oriented multiprocessor array. Highly complicated mapping problem is divided into subproblems such as modularization, operation grouping, processor placement, scheduling, control logic synthesis, and mask pattern generation. In this paper, the modularization technique is proposed which homogenizes all the operations of the processing algorithm to multiply-add operations. The processor placement algorithm to map processing algorithm onto a neo-systolic array so as to minimize data transfer time is also proposed.

  • On the Performance of Multivalued Integrated Circuits: Past, Present and Future

    Daniel ETIEMBLE  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    364-371

    We examine the characteristics of the past successful m-valued I2L and ROMs that have been designed and we discuss the reasons of their success and withdraw. We look at the problems associated with scaling of m-valued CMOS current mode circuits. Then we discuss the tolerance issue, the respective propagation delays of binary and m-valued ICs and the interconnection issue. We conclude with the challenges for m-valued circuits in the competition with the exponential performance increase of binary circuits.

  • Robustness of the Memory-Based Reasoning Implemented by Wafer Scale Integration

    Moritoshi YASUNAGA  Hiroaki KITANO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E76-D No:3
      Page(s):
    336-344

    The Memory-Based Reasoning (MBR) is one of the mainstay approaches in massively parallel artificial intelligence research. However, it has not been explored from the viewpoint of hardware implementation. This paper demonstrates high robustness of the MBR, which is suitable for hardware implementation using Wafer Scale Integration (WSI) technology, and proposes a design of WSI-MBR hardware. The robustness is evaluated by a newly developed WSI-MBR simulator in the English pronunciation reasoning task, generally known as MBRTalk. The results show that defects or other fluctuations of device parameters have only minor impacts on the performances of the WSI-MBR. Moreover, it is found that in order to get higher reasoning accuracy, the size of the MBR database is much more crucial than the computation resolution. These features are proved to be caused by the fact that MBR does not rely upon each single data unit but upon a bulk data set. Robustness in the other MBR tasks can be evaluated in the same manner as discussed in this paper. The proposed WSI-MBR processor takes advantage of benefits discovered in the simulation results. The most area-demanding circuits--that is, multipliers and adders--are designed by analog circuits. It is expected that the 1.7 million processors will be integrated onto the 8-inch silicon wafer by the 0.3 µm SRAM technology.

  • Reconfiguration Algorithm for Modular Redundant Linear Array

    Chang CHEN  An FENG  Yoshiaki KAKUDA  Tohru KIKUNO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E76-D No:2
      Page(s):
    210-218

    A typical fault-tolerance technique of systolic arrays is to include redundant processors and links so that the array is reconfigurable when some processors fail. Another typical technique is to implement each processor by a majority voter and N (N3) copies of processors so that the faults of up to N-2 copies of processors can be masked without reconfiguration. This paper proposes a systolic linear array called reconfigurable modular redundant linear array (RMA) that combines these techniques with N4. When up to 2 copies of each processor fail in RMA, the faults can be masked without reconfiguration. When some voters or more than 2 copies of a processor fail, RMA can be reconfigured by specifying a new switch pattern. In order to perform reconfiguration efficiently, we present a reconfiguration algorithm with time complexity O (n), where n is the number of processors in RMA.

  • Optical Waveguide Phase Controller for Microwave Signals Generated by Heterodyne Photodetection

    Yoshiaki KAMIYA  Wataru CHUJO  Masayuki FUJISE  

     
    LETTER-Fiber Optic Radio Links

      Vol:
    E76-C No:2
      Page(s):
    305-307

    This paper presents the successful performance of an optical waveguide phase controller for microwave signals generated by heterodyne photodetection. A 22 optical waveguide structure with four optical phase shifters was fabricated on a LiNbO3 substrate. As a result of heterodyne photodetection of two optical signals from wavelength-tunable laser diodes, two microwave signals at 585 MHz were generated and phase shifted in the manner of electro-optical phase retardation. The monolithic waveguide structure allowed linear phase shifting more than 1800 degrees. Similar phase shifting performances were also confirmed over a wide microwave frequency range from 300 MHz to 1.3 GHz. The optical waveguide structure demonstrated here will be applicable to fiber-optic fed microwave systems such as a phased array antenna.

  • Methods to Securely Realize Caller-Authenticated and Callee-Specified Telephone Calls

    Tomoyuki ASANO  Tsutomu MATSUMOTO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-A No:1
      Page(s):
    88-95

    This paper presents two methods for securely realizing caller-authenticated and callee-specified calls over telecommunication networks with terminals that accept IC cards having KPS-based cryptographic functions. In the proposed protocols, users can verify that the partner is the proper owner of a certain ID or a certain pen name. Users' privacy is protected even if they do the caller-authenticated and callee-specified calls and do not pay their telephone charge in advance.

  • Electrical Characteristics of Silicon Devices after UV-Excited Dry Cleaning

    Yasuhisa SATO  Rinshi SUGINO  Masaki OKUNO  Toshiro NAKANISHI  Takashi ITO  

     
    PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    41-46

    Breakdown fields and the charges to breakdown (QBD) of oxides increased after UV/Cl2 pre-oxidation cleaning. This is due to decreased residual metal contaminants on silicon surfaces in the bottom of the LOCOS region after wet cleaning. Treatment in NH4OH, H2O2 and H2O prior to UV/Cl2 cleaning suppressed increases in surface roughness and kept leakage currents through the oxides after UV/Cl2 cleaning as low as those after wet cleaning alone. The large junction leakage currents--caused by metal contaminants introduced during dry etching--decreased after UV/Cl2 cleaning which removes the contaminated layer.

  • Applying Attribute Grammars to Construct Fault-Tolerant Environments for Distributed Software Development

    An FENG  Tohru KIKUNO  Koji TORII  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    810-818

    When a group of developers are involved in the distributed development of some software product, they must communicate with one another frequently to exchange information about the product. To reduce the penalty of communication, the support environment should provide developers with their necessary information and update the information automatically while the product is modified by developers. Furthermore, the environment must meet the following requirements despite of workstation failures: whether a specific information is correct or not should always be decidable; as much information as possible should be updated correctly and efficiently. This paper presents a framework to construct such a fault-tolerant environment based on attribute grammars. In the framework, a product is represented by an attributed tree, which is partitioned into several subtrees {T1,,Tm}. Attribute values in each subtree Ti(1im) express the information about the product required by a developer. We introduce a set of redundant data and algorithms to meet the fault-tolerance requirements mentioned above. The correctness of an attribute value in Ti can then be decided in O(mn0log n) time, where n0n, and n is the number of attribute instances in Ti. All available attribute values can be updated with time complexity O(m2n1 log n) and communication complexity O(m2), where n1 is the number of attribute instances that must be reevaluated.

1141-1160hit(1184hit)