The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROM(701hit)

521-540hit(701hit)

  • A 1 V, 10.4 mW Low Power DSP Core for Mobile Wireless Use

    Shoichiro KAWASHIMA  Tetsuyoshi SHIOTA  Isao FUKUSHI  Ryuhei SASAGAWA  Wataru SHIBAMOTO  Atsushi TSUCHIYA  Teruo ISHIHARA  

     
    PAPER

      Vol:
    E83-C No:11
      Page(s):
    1739-1746

    An 1 V, 50 MHz, 16-bit DSP core was developed using a 0.25-µm Dual Vt library, SRAM, and Mask ROM tailored for 1 V operation. The core speed was 41% enhanced using an alternate MAC and 2-stage execution pipeline. A 1.0 V to 1.5 V voltage up converter with 59% power efficiency and a 450 ps 1 V to 2.5 V level converter were implemented. An new long wire delay estimation method enhanced the synthesis. The measured power consumption at 0.9 V was 8.7 mW, which was 40% less than the power of the normal library's at 1.3 V, when the PSI-CELP CODEC firmware was run at 40 MHz.

  • Airborne Dual-Frequency Polarimetric and Interferometric SAR

    Tatsuharu KOBAYASHI  Toshihiko UMEHARA  Makoto SATAKE  Akitsugu NADAI  Seiho URATSUKA  Takeshi MANABE  Harunobu MASUKO  Masanobu SHIMADA  Hiroshi SHINOHARA  Hideharu TOZUKA  Masanori MIYAWAKI  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    1945-1954

    An airborne X- and L-band synthetic aperture radar system was developed by the Communications Research Laboratory and the National Space Development Agency of Japan in their joint project from 1993 to 1996. It is installed in the airplane, Gulfstream II. In both the azimuth and range directions, the resolution is 1.5 m for the X-band and 3 m for the L-band. Both SARs can make fully polarimetric observations. The X-band SAR has a cross-track interferometric function. In this paper we describe the SAR system, its ground processing system, and its performance. We also discuss motion compensation and interferogram quality.

  • Response of Microwave on Bare Soil Moisture and Surface Roughness by X-Band Scatterometer

    Dharmendra SINGH  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  Keshev Prasad SINGH  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    2038-2043

    This paper describes an individual effect of soil moisture (mg) and surface roughness (hrms) of bare soil on the back scattering coefficient (σ0) at the X-band frequency. The study contributes to the design of an efficient microwave sensor. For this purpose, experimentally observed data was utilized to provide a composite σ0 equation model accounting for individual effect in regression analysis. The experimental data are compared with Small Perturbation Method. It is observed that the X-band gives better agreement up to incidence angle 50 for HH-polarization and 60 for VV-polarization as compared to the C-band. The lower angles of incidence give better results than the higher angles for observing mg at the X-band. The multiple and partial regression analyses have also carried out for predicting the dependence of scattering coefficient (σ0) on mg and hrms more accurately. The analyses suggest that the dependence of dielectric constant (i.e., mg) is much more significant in comparison to surface roughness at lower angles of incidence for both like polarizations. The results propose the suitable angle of incidence for observing bare surface roughness and soil moisture at the X-band. All these data can be used as a reference for satellite or spaceborne sensors.

  • Extra Wideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing

    Wolfgang-Martin BOERNER  Yoshio YAMAGUCHI  

     
    INVITED PAPER

      Vol:
    E83-B No:9
      Page(s):
    1906-1915

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly. Whereas with radar polarimetry, the textural fine-structure, target orientation, symmetries and material constituents can be recovered with considerable improvement above that of standard amplitude-only radar; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging, it is possible to recover such co-registered textural and spatial information from POL-IN-SAR digital image data sets simultaneously, including the extraction of Digital Elevation Maps (DEM) from either Polarimetric (scattering matrix) or Interferometric (single platform: dual antenna) SAR systems. Simultaneous Polarimetric-plus-Interferometric SAR offers the additional benefit of obtaining co-registered textural-plus-spatial three-dimensional POL-IN-DEM information, which when applied to Repeat-Pass Image-Overlay Interferometry provides differential background validation, stress assessment and environmental stress-change information with high accuracy. Then, by either designing Multiple Dual-Polarization Antenna POL-IN-SAR systems or by applying advanced POL-IN-SAR image compression techniques, it will result in POL-arimetric TOMO-graphic (Multi-Inter-ferometric) SAR or POL-TOMO-SAR Imaging. This is of direct relevance to local-to-global environmental background validation, stress assessment and stress-change monitoring of the terrestrial and planetary covers.

  • Design, Process, and Evaluation of a Tunable Optical Fabry-Perrot Filter Using a Silicon Capacitive Pressure Sensor

    Kenichiro SUZUKI  Takefumi OGUMA  Tetsuji UEDA  Takashi SHIBUYA  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1435-1440

    A tunable optical Fabry-Perrot filter was designed by setting a single-mode optical fiber normal to the diaphragm of a capacitive pressure sensor. The silicon diaphragm is deflected by the electrostatic force generated by applying a voltage to the capacitive electrodes. According to the movement of the diaphragm, the peak wavelength changed from 1546 to 1551 nm when applied voltage was increased from 20 to 50 V. The relationship of the wavelength change to the applied voltage was derived from the silicon diaphragm deflection theory. That measured change of the wavelength agrees well with the wavelength change calculated from this relationship. The commercial pressure sensors are expected to be able to be used as a tunable optical filter.

  • Hierarchical Least-Squares Algorithm for Macromodeling High-Speed Interconnects Characterized by Sampled Data

    Yuichi TANJI  Mamoru TANAKA  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E83-A No:9
      Page(s):
    1833-1843

    The interconnect analysis of on- and off-chips is very important in the design of high-speed signal processing, digital communication, and microwave electronic systems. When the interconnects are characterized by sampled data via electromagnetic analysis, the circuit-level simulation of the network requires rational approximation of the sampled data. Since the frequency band of the sampled data is more than 10 GHz, the rational function must fit into it at many frequency points. The rational function is approximated using the orthogonal least-squares method. With an increase in the number of the fitting data, the least-squares method suffers from a singularity problem. To avoid this, the sampled data are hierarchically approximated in this paper. Moreover, to reduce the computational cost of the circuit-level simulation, the parameter matrix of the interconnects is approximated by a rational matrix with one common denominator polynomial, and the selective orthogonalization procedure is presented.

  • Sensing Film Characterization of Mixed Liquid Films for Odor Sensing System

    Junichi IDE  Yukihiko NAKAMURA  Takamichi NAKAMOTO  Toyosaka MORIIZUMI  

     
    PAPER-Sensor

      Vol:
    E83-C No:7
      Page(s):
    1046-1050

    Since odor sensing system is required in many fields, we have developed the system using QCM (Quartz Crystal Microbalance) sensor array and neural-network pattern recognition. In the present study, the mixed sensing films of two kinds of liquid-phase materials were characterized. As a result, it was found that the variety of sensing films were obtained by mixing two kinds of liquid-phase materials. The relative remnant of sensing film after repeated exposures was examined, and mixed films of two kinds of liquid-phase materials were found stable for the sensing materials.

  • Development of 1D Object-Oriented Particle-in-Cell Code (1d-XOOPIC)

    Hideyuki USUI  John P. VERBONCOEUR  Charles K. BIRDSALL  

     
    LETTER-Electromagnetic Theory

      Vol:
    E83-C No:6
      Page(s):
    989-992

    For plasma simulations, we developed a one-dimensional (1d) Object-Oriented Particle-in-Cell code for X11-based Unix workstations (XOOPIC) by modifying the current two-dimensional version which was originally developed by PTSG (Plasma theory and simulation group) in the University of California at Berkeley. We implemented a simplified field solve and current deposition in the code. We retained three components of particle velocity, although the spatial variation for particle position and field components is limited to one dimension. To verify the function of the 1d code, we perform simulations with typical models such as the Child-Langmuir current model and electromagnetic wave propagation in plasma. In both cases, the simulation results quantitatively agree with the theory.

  • Planar PBG Structures: Basic Properties and Applications

    Fei-Ran YANG  Roberto COCCIOLI  Yongxi QIAN  Tatsuo ITOH  

     
    INVITED PAPER

      Vol:
    E83-C No:5
      Page(s):
    687-696

    This paper reviews recent progresses in the research and development of planar photonic band-gap (PBG) structures, also called electromagnetic crystals, for microwave and millimeter-wave applications. Planar electromagnetic crystals are particularly attractive and intensively investigated because of their easy fabrication, low cost, and compatibility with standard planar circuit technology. Two configurations and their applications are described in this paper: a square lattice of holes etched in a ground plane and the recently developed Uniplanar Compact PBG (UC-PBG) structure. Basic properties as well as applications to microwave circuits are reported. These include harmonic tuning in power amplifier, leakage suppression in conductor-backed coplanar waveguide (CB-CPW), realization of planar slow-wave structure, and performance improvement in microstrip filters and patch antennas.

  • An Analysis on Magnetostatic Waves by FDTD Method

    Toshiro KODERA  Hitoshi SHIMASAKI  Makoto TSUTSUMI  

     
    PAPER

      Vol:
    E83-C No:5
      Page(s):
    713-719

    This report introduces a new approach to the time domain analysis of the magnetostatic wave in ferrite materials. The time domain analysis is carried out by the finite difference time domain (FDTD) method. To include the gyromagnetic properties which is the origin of magnetostatic wave, direct differentiation of magnetic dipole moment equation in time and space domains without any approximation are carried out and is combined with Maxwell's equation under the FDTD method. As a result, the possibilities of the analysis on the magnetostatic wave with the FDTD method are confirmed and the validities of this approach are confirmed by some inspections. In addition, the analyses of the nonlinear characteristics on the magnetostatic backward volume waves (MSBVW) are carried out and clarify the dependance of the space profile on the input power.

  • Shape from Focus Using Multilayer Feedforward Neural Networks

    Muhammad ASIF  Tae-Sun CHOI  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:4
      Page(s):
    946-949

    The conventional shape from focus (SFF) methods have inaccuracies because of piecewise constant approximation of the focused image surface (FIS). We propose a more accurate scheme for SFF based on representation of three-dimensional FIS in terms of neural network weights. The neural networks are trained to learn the shape of the FIS that maximizes the focus measure.

  • Cause of Long Spikes for Cyclotron Harmonic Waves in the Ionograms

    Toshio UTSUNOMIYA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:4
      Page(s):
    838-849

    The long spikes have been often recorded at the multiples of the electron cyclotron frequency in the ionograms of the topside sounders observed in low latitudes. There has not been sufficient explanation for the physical cause for occourrence of the long spike so far. Here, by interpreting this phenomenon as receiving the trapped cyclotron harmonic wave, some analyses for the length of spike are done not only from the viewpoint of the sweeping property of the frequency spectrum of the transmitted pulse but also from that of the mutual positional relation between the propagation path and the orbit of the sounder. The cause of forming a single spike and a graphical calculation method for the long spike are proposed, respectively. Thus, the cause and the fine structure of long spike consisting of superposed spikes are clarified.

  • Fabrication and Characterization of a Retroreflective Type of Practical LiNbO3 Voltage Sensor Operating in the Range of 6 Hz to 2 GHz

    Tadashi ICHIKAWA  Manabu KAGAMI  Hiroshi ITO  

     
    PAPER-Sensors for Electromagnetic Phenomena

      Vol:
    E83-C No:3
      Page(s):
    355-359

    This paper reports the performance of an AC-voltage sensor with a LiNbO3 integrated retroreflective structure based on the Y-junction Mach-Zehnder interferometer. This structure is capable of realizing a low-cost sensor chip because of the small chip size and single optical-fiber connection. In the sensitivity and frequency response evaluation, detection sensitivities of 6.3 µ V / Hz have been measured with a frequency response from 6 Hz to 2 GHz. These measurement limitations were also analyzed theoretically and compared with the experimental results. This unique sensor enables precise voltage measurement in an EMI environment, even inside a computer.

  • Accurate Shape from Focus Using Second Order Curved Search Windows

    Joungil YUN  Tae S. CHOI  

     
    LETTER-Computer Graphics

      Vol:
    E83-A No:3
      Page(s):
    571-574

    In this letter we propose a new Shape from Focus (SFF) method using piecewise curved search windows for accurate 3-D shape recovery. The new method uses piecewise curved windows to compute focus measure and to search for Focus Image Surface (FIS) in image space. The experimental result shows that our new method gives more accurate result than the previous SFF methods.

  • A Novel All-Fiber Ellipsometer

    Leszek R. JAROSZEWICZ  Aleksander KIEZUN  Ryszard SWILLO  

     
    PAPER-Interferometry and Polarimetry

      Vol:
    E83-C No:3
      Page(s):
    384-390

    In the paper, a theoretical and experimental investigation of a new type of the in-line optical fiber ellipsometer is described. The discussed device, based on the Sagnac interferometer, has the possibility to detect the changes of full polarisation state. The detection of the polarisation state in real time by a system containing standard single-mode fiber and an appropriate applied modulation technique is a new system property. The device uses interferometric measurement technique based on the fourth Fresnel-Arago's condition, which secures very good system accuracy and stability, also presented in the paper.

  • Industrial Applications of FOG

    Tatsuya KUMAGAI  Wataru OHNUKI  

     
    INVITED PAPER-Fiber Optic Gyroscope

      Vol:
    E83-C No:3
      Page(s):
    378-383

    In this paper, we review recent developments in interferometric fiber-optic gyroscopes for industrial applications. These gyroscopes use only elliptical-jacket or elliptical-core polarization-maintaining-fibers to make their optical systems immune to environmental effects, and they use open-loop or closed-loop signal processing circuitry. We have begun mass production of a gyroscope for automotive navigation and location systems. The more accurate gyroscopes have been applied to a number of consumer applications such as attitude control systems of unmanned agricultural helicopter, pipe-mapping and north-finding systems. For further enhancement in terms of size, cost, and accuracy, we have developed an application specific integrated circuit and an integrated optical circuit.

  • Fiber-Optic Low Coherence Velocimetry by Detecting Interference Fluctuations

    Yoh IMAI  Kazuhiro TANAKA  

     
    PAPER-Distributed Sensing

      Vol:
    E83-C No:3
      Page(s):
    423-427

    A new sensing method for measuring directly flow velocity by using low coherence interference techniques is proposed and demonstrated. In this method, a temporally fluctuating signal, not the Doppler frequency shift, is detected. Theoretical analysis shows that a spectrum of light backscattered from a particle takes a Gaussian form whose width is simply proportional to the flow velocity. The measured velocity is in good agreement with the actual flow velocity derived from the flow rate. The dynamic range of this sensing method is governed by the frequency range of the FFT processor used and is estimated to be 1.4 10-4 14 m/s. The depth position can be adjusted with an accuracy of approximately 30 µm which is determined by the coherence length of the light source. The velocity distribution along the depth is easily measured by changing mechanically the length of the reference arm in the low coherence interferometer.

  • Requirements for Controlling Coverage of 2.4-GHz-Band Wireless LANs by Using Partitions with Absorbing Board

    Yuji MAEDA  Kazuhiro TAKAYA  Nobuo KUWABARA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    525-531

    For a wireless communication system to work effectively without interference, the electromagnetic environment needs to be controlled. We experimentally and analytically investigated the requirements for controlling the electrical field strength and delay spread so as to achieve the best communication without electromagnetic interference in selected regions for a 2.4-GHz-band wireless LAN system. To control the coverage, partitions were placed around desks in a test environment and covered on the inside with electromagnetic absorbing board from the top of the desks to the top of the partitions; four indoor environments that combined one of two wall-material types and one of two partition heights were used. The transmission loss and delay spread were measured, then calculated using ray tracing to verify the effectiveness of using ray-tracing calculation. The throughput and BER characteristics were measured for the same environments to clarify the requirements for controlling the coverage. We found that covered and uncovered regions could be created by using partitions with absorbing boards and that the delay spread must be less than 15 ns and the received-signal must be stronger than -75 dBm for a region to be covered. We verified that the delay spread can be calculated to within 5 ns and the received-signal level can be calculated to within 5 dB of the measured data by using ray tracing. Therefore, ray tracing can be used to design antenna positions and indoor environments where electromagnetic environments are controlled for 2.4-GHz-band wireless LAN systems.

  • The Future of EMC Technology

    Shuichi NITTA  

     
    INVITED PAPER

      Vol:
    E83-B No:3
      Page(s):
    435-443

    This paper reviews the present EMC technology level, introduces the problems to be investigated in the near future from the viewpoint of design technology, test and measurement and systems safety, and proposes what is a goal of technology level of EMC to be established for circuits, equipments and systems.

  • FDTD Analysis of Dosimetry in Human Head Model for a Helical Antenna Portable Telephone

    Jianqing WANG  Osamu FUJIWARA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    549-554

    This paper presents a dosimetric analysis in an anatomically realistic human head model for a helical antenna portable telephone by using the finite-difference time-domain (FDTD) method. The head model, developed from magnetic resonance imaging (MRI) data of a Japanese adult head, consists of 530 thousand voxels, of 2 mm dimensions, segmented into 15 tissue types. The helical antenna was modeled as a stack of dipoles and loops with an adequate relative weight, whose validity was confirmed by comparing the calculated near magnetic fields with published measured data. SARs are given both for the spatial peak value in the whole head and the averages in various major organs.

521-540hit(701hit)