The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROM(701hit)

321-340hit(701hit)

  • A Novel Defected Elliptical Pore Photonic Crystal Fiber with Ultra-Flattened Dispersion and Low Confinement Losses

    Nguyen Hoang HAI  Yoshinori NAMIHIRA  Feroza BEGUM  Shubi KAIJAGE  S.M. Abdur RAZZAK  Tatsuya KINJO  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:8
      Page(s):
    1627-1633

    This paper reports a novel design in Photonic Crystal Fibers (PCFs) with nearly zero ultra-flattened dispersion characteristics. We describe the chromatic dispersion controllability taking non-uniform air hole structures into consideration. Through optimizing non-uniform air hole structures, the ultra-flattened zero dispersion PCFs can be efficiently designed. We show numerically that the proposed non-uniform air cladding structures successfully archive flat dispersion characteristics as well as extremely low confinement losses. As an example, the proposed PCF with flattened dispersion of 0.27 ps/(nmkm) from 1.5 µm to 1.8 µm wavelength with confinement losses of less than 10-11 dB/m. Finally, we point out that full controllability of the chromatic dispersion and confinement losses, along with the fabrication technique, are the main advantages of the proposed PCF structure.

  • Modeling and Simulation of Hermetically Sealed Electromagnetic Relay under Mechanical Environment

    Wanbin REN  Yinghua CHEN  Guofu ZHAI  

     
    PAPER-Relays & Switches

      Vol:
    E90-C No:7
      Page(s):
    1448-1454

    Hermetically sealed electromagnetic relays (EMR) are widely used for high reliability control and executive systems as a device mechanically transferring signals. Now they are more indispensable in space engineering, such as rockets, satellites and other ground attachment, but which mechanical atmosphere is too harsh. So dynamics response of EMR is needed to satisfy particularity of such mechanical atmosphere. In this paper, a typical hermetically sealed EMR structure is modeled by using finite element analysis software-Nastran. In the meantime the equivalent spring elements are introduced to simulate the contact of normally closed contacts, and the contact between armature and iron stopper. Therefore dynamic performance of EMR under different mechanical environment, including sinusoid vibration and shock condition is investigated completely. The factors affecting normal modes and dynamic response of EMR are analyzed. Comparisons show good correlation between experimental and numerical results.

  • SAR Investigation of Array Antennas for Mobile Handsets

    Qiang CHEN  Yasunori KOMUKAI  Kunio SAWAYA  

     
    LETTER

      Vol:
    E90-B No:6
      Page(s):
    1354-1356

    The peak SAR values of two-element array antennas for mobile handsets in the vicinity of a spherical phantom of a human head are evaluated numerically as a function of the distance between the array antenna and the head phantom when the two elements of a two-element array antenna are either co-phase voltage-fed or reverse-phase voltage-fed. It is found that relation between the worst case of the SAR and the phase difference of array elements strongly depends on the distance. When part of the head phantom is located in the reactive near-field region of the array antenna, although the co-phase feed SAR value is slightly smaller than the reverse-phase feed SAR value, the SAR value is practically independent of the phase difference, but when the head is completely outside the reactive near-field region, the co-phase feed SAR value is larger than the reverse-phase feed SAR value.

  • A Study on Performance Degradation of Digital Electronic Equipment under Electromagnetic Disturbance

    Takehiro TAKAHASHI  Hironori OKANIWA  Takashi SAKUSABE  Noboru SCHIBUYA  

     
    PAPER-Measurement and Immunity

      Vol:
    E90-B No:6
      Page(s):
    1338-1343

    In this research, the performance degradation of the digital electronic equipment under electromagnetic (EM) disturbance was studied in order to investigate the interference of intra-equipment. To develop the evaluation method of the performance degradation, some communication indexes were measured under EM disturbance. From some experimental results, it is known that the performance degradation of the electronic equipment was estimated by the degradation of "through-put," one of the communication performance indexes. For further investigation of the interference of intra-equipment, the near EM field from a PCB of the electronic equipment and its performance degradation under EM disturbance were measured and compared. From the measured results, the relationship between near field measurement and performance degradation could be obtained in some extent. These facts enable us that the weak area under the EM disturbance application on PCB can be foreseen by measuring the near field emission from the equipment and vise versa.

  • Design and Fabrication of 40 Gbps-NRZ SOA-MZI All-Optical Wavelength Converters with Submicron-Width Bulk InGaAsP Active Waveguides

    Yasunori MIYAZAKI  Kazuhisa TAKAGI  Keisuke MATSUMOTO  Toshiharu MIYAHARA  Tatsuo HATTA  Satoshi NISHIKAWA  Toshitaka AOYAGI  Kuniaki MOTOSHIMA  

     
    PAPER-Semiconductor Devices

      Vol:
    E90-C No:5
      Page(s):
    1118-1123

    The design aspects of the bulk InGaAsP semiconductor optical amplifier integrated Mach-Zehnder interferometer (SOA-MZI) optimized for 40 Gbps-NRZ all optical wavelength conversion are described. The dimensions of the SOA active waveguide have been optimized for fast gain recovery by maximizing the gain and adjusting the wavelength-converted NRZ waveforms. Submicron-width buried heterostructure (BH) SOA waveguides were fabricated successfully and showed little leakage current. The experimental wavelength-converted optical waveform agreed well to the numerical simulations, and mask-compliant 40 G-NRZ wavelength-converted waveform was obtained by the optimized SOA-MZI. 40 G-NRZ full C-band operation and polarization-insensitive operation of SOA-MZI were also achieved.

  • Uncalibrated Factorization Using a Variable Symmetric Affine Camera

    Kenichi KANATANI  Yasuyuki SUGAYA  Hanno ACKERMANN  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:5
      Page(s):
    851-858

    In order to reconstruct 3-D Euclidean shape by the Tomasi-Kanade factorization, one needs to specify an affine camera model such as orthographic, weak perspective, and paraperspective. We present a new method that does not require any such specific models. We show that a minimal requirement for an affine camera to mimic perspective projection leads to a unique camera model, called symmetric affine camera, which has two free functions. We determine their values from input images by linear computation and demonstrate by experiments that an appropriate camera model is automatically selected.

  • A Carrier Interferometry Based Channel Estimation Technique for MIMO-OFDM/TDMA Systems

    Kazunari YOKOMAKURA  Seiichi SAMPEI  Hiroshi HARADA  Norihiko MORINAGA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1181-1192

    This paper proposes a channel estimation technique for the dynamic parameter controlled--orthogonal frequency and time division multiple access (DPC-OF/TDMA) systems studied as one of the candidates of the beyond third generation (B3G) systems. In the proposed scheme, the impulse response, which represents the channel state information (CSI) is estimated using carrier interferometry (CI) which is equivalent to impulse signal transmission. Moreover, because the minimum number of subcarriers allocated to terminals is 64, in order to estimate a CSI with its spreading factor of 64, we employ a code-multiplexed CI signal for a cell search process and a time-domain-multiplexed CI signal for transmit antenna identification. Furthermore, we also propose a flexible CSI estimation scheme that supports two cases: multiple subchannel block assignment and MIMO transmission cases. Computer simulation confirms that the proposed scheme can estimate the CSI with high accuracy.

  • Global Noise Estimation Based on Tensor Product Expansion with Absolute Error

    Akitoshi ITAI  Hiroshi YASUKAWA  Ichi TAKUMI  Masayasu HATA  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    778-783

    This paper proposes a novel signal estimation method that uses a tensor product expansion. When a bivariable function, which is expressed by two-dimensional matrix, is subjected to conventional tensor product expansion, two single variable functions are calculated by minimizing the mean square error between the input vector and its outer product. A tensor product expansion is useful for feature extraction and signal compression, however, it is difficult to separate global noise from other signals. This paper shows that global noise, which is observed in almost all input signals, can be estimated by using a tensor product expansion where absolute error is used as the error function.

  • Behavioral Circuit Macromodeling and Analog LSI Implementation for Automobile Engine Intake System

    Zhangcai HUANG  Yasuaki INOUE  Hong YU  Jun PAN  Yun YANG  Quan ZHANG  Shuai FANG  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    732-740

    Accurate estimating or measuring the intake manifold absolute pressure plays an important role in automobile engine control. In order to achieve the real-time estimation of the absolute pressure, the high accuracy and high speed processing ability are required for automobile engine control systems. Therefore, in this paper, an analog method is discussed and a fully integrated analog circuit is proposed to simulate automobile intake systems. Furthermore, a novel behavioral macromodeling is proposed for the analog circuit design. With the analog circuit, the intake manifold absolute pressure, which plays an important role for the effective automobile engine control, can be accurately estimated or measured in real time.

  • Novel Square Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion and Low Confinement Losses

    Feroza BEGUM  Yoshinori NAMIHIRA  S.M. Abdur RAZZAK  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:3
      Page(s):
    607-612

    This study proposes a novel structure of index-guiding square photonic crystal fibers (SPCF) having simultaneously ultra-flattened chromatic dispersion characteristics and low confinement losses in a wide wavelength range. The finite difference method (FDM) with anisotropic perfectly matched layers (PMLs) is used to analyze the various properties of square PCF. The findings reveal that it is possible to design five-ring PCFs with a flattened negative chromatic dispersion of 0-1.5 ps/(nm.km) in a wavelength range of 1.27 µm to 1.7 µm and a flattened chromatic dispersion of 01.15 ps/(nm.km) in a wavelength range of 1.25 µm to 1.61 µm. Simultaneously it also exhibited that the confinement losses are less than 10-9 dB/m and 10-10 dB/m in the wavelength range of 1.25 µm to 1.7 µm.

  • Reconstruction of Printed Image Using Electromagnetic Disturbance from Laser Printer

    Toshihide TOSAKA  Kazumasa TAIRA  Yukio YAMANAKA  Kaori FUKUNAGA  Atsuhiro NISHIKATA  Mitsuo HATTORI  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:3
      Page(s):
    711-715

    The electromagnetic disturbance that leaks from ICT (information and communications technology) equipment might contain important information. Our measurements show that the information hidden inside of the electromagnetic disturbance can be monitored. First, we measured the level of the electromagnetic disturbance that leaks from laser printers and collected the waveform in the time domain. Then, we reconstructed the printed image from the data. As a result of our measurements, we found that at points 200 cm away or beyond it is difficult to reconstruct the printed image, and therefore the threat to electromagnetic security is not significant.

  • Circularly Polarized Printed Antenna Combining Slots and Patch

    Toshimitsu TANAKA  Tamotsu HOUZEN  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:3
      Page(s):
    621-629

    In this paper, the authors propose a circularly polarized printed antenna combining a slot array antenna and a patch antenna, with dual-band operation. The proposed antenna has good isolation performance, is compact, and has simple configuration. This antenna is composed of two parts, a patch antenna (for Rx) on the top, and a slot array antenna (for Tx) on the bottom, respectively. The element layout is such that the lower radiation element is not hidden by the upper one for wide observation angle. Hence, both radiation elements can naturally radiate the targeted polarization. Both slot array and patch antenna are fed by electromagnetically coupled microstrip line feed. With such a configuration, it is possible to efficiently obtain good isolation characteristics for both frequency bands. Furthermore, this antenna can be easily composed and it is not necessary to use any feeding pin or via hole. The target of this antenna is mobile communications applications such as mobile satellite communications, base-station of wireless LAN, etc. Here, the design techniques are discussed and the numerical and experimental analyses are presented.

  • Multigrid Optimization Method Applied to Electromagnetic Inverse Scattering Problem

    Mitsuru TANAKA  Kazuki YANO  Hiroyuki YOSHIDA  Atsushi KUSUNOKI  

     
    PAPER-Inverse Problems

      Vol:
    E90-C No:2
      Page(s):
    320-326

    An iterative reconstruction algorithm of accelerating the estimation of the complex relative permittivity of a cylindrical dielectric object based on the multigrid optimization method (MGOM) is presented. A cost functional is defined by the norm of a difference between the scattered electric fields measured and calculated for an estimated contrast function, which is expressed as a function of the complex relative permittivity of the object. Then the electromagnetic inverse scattering problem can be treated as an optimization problem where the contrast function is determined by minimizing the cost functional. We apply the conjugate gradient method (CGM) and the frequency-hopping technique (FHT) to the minimization of the cost functional, and also employ the multigrid method (MGM) with a V-cycle to accelerate the rate of convergence for getting the reconstructed profile. The reconstruction scheme is called the multigrid optimization method. Computer simulations are performed for lossy and inhomogeneous dielectric circular cylinders by using single-frequency or multifrequency scattering data. The numerical results demonstrate that the rate of convergence of the proposed metod is much faster than that of the conventional CGM for both noise-free and noisy cases.

  • An Efficient Method to Calculate the Convolution Based Reaction Integral Using the Analytical Fourier Transform

    Gianluigi TIBERI  Agostino MONORCHIO  Marco DEGIORGI  Giuliano MANARA  Raj MITTRA  

     
    LETTER-Fundamental Theory of Electromagnetic Fields

      Vol:
    E90-C No:2
      Page(s):
    231-234

    A major step in the numerical solution of electromagnetic scattering problems involves the computation of the convolution based reaction integrals. In this paper a procedure based on the analytical Fourier transform is introduced which allows us to calculate the convolution-based reaction integrals in the spectral domain without evaluating any convolution products directly. A numerical evaluation of the computational cost is presented to show the efficiency of the method when handling electrically large problems.

  • A Numerical Solution for Electromagnetic Scattering from Large Faceted Conducting Bodies by Using Physical Optics-SVD Derived Bases

    Gianluigi TIBERI  Agostino MONORCHIO  Giuliano MANARA  Raj MITTRA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E90-C No:2
      Page(s):
    252-257

    A novel procedure for an efficient and rigorous solution of electromagnetic scattering problems is presented. It is based on the use of universal bases that are obtained by applying the SVD procedure to PO-derived basis functions. These bases, constructed by totally bypassing any matrix-type approach, can be used for all angles of incidence and their use leads to a matrix with relatively small dimensions. The method enables us to solve 2D scattering problems in a computationally efficient and numerically rigorous manner.

  • Microoptomechatronics: An Overview

    Kiyoshi ITAO  

     
    INVITED REVIEW PAPER

      Vol:
    E90-C No:1
      Page(s):
    3-5

    A historical overview of microoptomechatronics technologies is presented for positioning of microoptomechatronics, accompanied with a future view based on the current state of art nanotechnologies. How the technologies have been developed for realizing practical precision and information devices based on optics or photonics is also mentioned, citing a few examples.

  • Constant-Magnification Varifocal Mirror and Its Application to Measuring Three-Dimensional (3-D) Shape of Solder Bump

    Akira ISHII  Jun MITSUDO  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    6-11

    In this paper, we describe a novel focusing mechanism that uses a varifocal mirror and its application to measuring the shape of solder bumps arrayed on an LSI package board based on the shape-from-focus technique. We used a copper-alloy mirror deformed by a piezoelectric actuator as a varifocal mirror to build a simple yet fast focusing mechanism. The varifocal mirror was situated at the focal point of the image-taking lens in image space so that the lateral magnification was constant during focusing and an orthographic projection was perfectly established. The focused plane could be shifted along the optical axis with a precision of 1.4 µm in a depth range of 1.3 mm by driving the varifocal mirror. A magnification of 1.97 was maintained during focusing. Evaluating the curvature of field and removing its effect from the depth data reduced errors. The shapes of 208 solder bumps, 260 µm high and arrayed at a pitch of 500 µm on the board, were measured. The entire 10 mm10 mm board was segmented into 34 partly overlapping sections. We captured 101 images in each section with a high-resolution camera at different focal points at 15 µm intervals. The shape of almost the entire upper hemisphere of a solder bump could be measured. The error in measuring the bump heights was less than 12 µm.

  • Chroma Key Using a Checker Pattern Background

    Hiroki AGATA  Atsushi YAMASHITA  Toru KANEKO  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    242-249

    In this paper, we propose a new region extraction method using chroma key with a two-tone checker pattern background. The method solves the problem in conventional chroma key techniques that foreground objects become transparent if their colors are the same as the background color. The method utilizes the adjacency condition between two-tone regions of the background and the geometrical information of the background grid line. The procedure of the proposed method consists of four steps: 1) background color extraction, 2) background grid line extraction, 3) foreground extraction, and 4) image composition. As to background color extraction, a color space approach is used. As to background grid line extraction, it is difficult to extract background grid line by a color space approach because the color of this region may be a composite of two background colors and different from them. Therefore, the background grid line is extracted from adjacency conditions between two background colors. As to foreground extraction, the boundary between the foreground and the background is detected to recheck the foreground region whose color is same as the background, and the background region whose color is same as the foreground. To detect regions whose colors are same as the background, the adjacency conditions with the background grid line are utilized. As to image composition, the process that smoothes the color of the foreground's boundary against the new background is carried out to create natural images. Experimental results show that the foreground objects can be segmented exactly from the background regardless of the colors of the foreground objects.

  • Fabrication of Microchannel with Thin Cover Layer for an Optical Waveguide MEMS Switch Based on Microfluidics

    Takuji IKEMOTO  Yasuo KOKUBUN  

     
    PAPER-Micro/Nano Photonic Devices

      Vol:
    E90-C No:1
      Page(s):
    78-86

    We propose and demonstrate a new fabrication process of a microchannel using the Damascene process. This process aims to integrate photonic circuits with microchannels fabricated in a glass film. The microchannel is fabricated by the removal of the sacrificial layer after a sacrificial layer is formed by the Damascene process and the cover is formed by sputter deposition. A thin cover layer can be formed by the sacrificial method, because the cover layer is supported by the sacrificial layer during film formation. The cover layer is hermetically sealed, since it is formed by radio frequency (RF) sputtering deposition. The thickness is 1 µm and the width ranges from 3.5 to 8 µm. Using the proposed microchannel fabrication method, we prepared a microelectromechanical system (MEMS) optical switch using microfluidics, and we confirmed its functional operation. This optical switch actuates a minute droplet of liquid injected into the microchannel using Maxwell's stresses. Light propagates straight through the waveguide so that the light passes through the microchannel when the droplet is in the microchannel, but the light rays are completely reflected into a crossed waveguide when the droplet is not in the microchannel. Since this fabrication method uses techniques common to those in the formation of copper wiring in an IC chip, it can be used in the microchannel process.

  • Micromirror with Two Parallel Rotation Axes for External Cavity Diode Laser

    Masahiro ISHIMORI  Minoru SASAKI  Kazuhiro HANE  

     
    PAPER-Micro/Nano Photonic Devices

      Vol:
    E90-C No:1
      Page(s):
    72-77

    A micromirror for an external cavity diode laser is described. The mirror is supported by two sets of parallel torsion bars enabling piston motion as well as rotation. These motions are for realizing continuous wavelength tuning. Adjusting two rotations electrically, the pivot of the mirror rotation can be controlled. The long stroke of the vertical comb is realized by the deep three-dimensional structure prepared by the wafer bending method.

321-340hit(701hit)