The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

6381-6400hit(16314hit)

  • An Analysis of Multi-Layer Inductors for Miniaturizing of GaAs MMIC

    Yo YAMAGUCHI  Takana KAHO  Motoharu SASAKI  Kenjiro NISHIKAWA  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1119-1125

    Newly developed multi-layer inductors on GaAs three-dimensional MMICs are presented. We analyzed single-, double-, triple-, and quadruple-layer stacked-type inductors in what may be the first report on inductors on a GaAs MMIC with three or more layers. The performance of single- and multi-layer inductors was measured and calculated by electromagnetic field simulation. The multi-layer inductors produce 2-11 times higher inductance than that of conventional inductors on 2D-MMICs although they are the same size. This means that the proposed multi-layer inductors have smaller areas with the same inductances than those of conventional inductors. We also conducted the first-ever investigation of how performance factors such as parasitic capacitance, Q-factor, and self-resonant frequency are degraded in multi-layer inductors vis-a-vis those of conventional inductors. A microwave amplifier using multi-layer inductors was demonstrated and found to reduce circuit size by 20%.

  • A Novel Predistorter Design for Nonlinear Power Amplifier with Memory Effects in OFDM Communication Systems Using Orthogonal Polynomials

    Yitao ZHANG  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    983-990

    Orthogonal frequency division multiplexing (OFDM) signals have high peak-to-average power ratio (PAPR) and cause large nonlinear distortions in power amplifiers (PAs). Memory effects in PAs also become no longer ignorable for the wide bandwidth of OFDM signals. Digital baseband predistorter is a highly efficient technique to compensate the nonlinear distortions. But it usually has many parameters and takes long time to converge. This paper presents a novel predistorter design using a set of orthogonal polynomials to increase the convergence speed and the compensation quality. Because OFDM signals are approximately complex Gaussian distributed, the complex Hermite polynomials which have a closed-form expression can be used as a set of orthogonal polynomials for OFDM signals. A differential envelope model is adopted in the predistorter design to compensate nonlinear PAs with memory effects. This model is superior to other predistorter models in parameter number to calculate. We inspect the proposed predistorter performance by using an OFDM signal referred to the IEEE 802.11a WLAN standard. Simulation results show that the proposed predistorter is efficient in compensating memory PAs. It is also demonstrated that the proposal acquires a faster convergence speed and a better compensation effect than conventional predistorters.

  • Broad-Band Circularly Polarized Ring-Slot Array Antenna for Simultaneous Use of the Orthogonal Polarizations

    Sen FENG  Eisuke NISHIYAMA  Masayoshi AIKAWA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1105-1110

    A novel broad-band ring-slot array antenna for simultaneous use of orthogonal polarizations is presented in this paper. In this antenna, the broad-band performance is obtained by integrating a 22 ring-slot array antenna and a broad-band π/2 hybrid circuit. The simultaneous use of the right-hand circular polarization (RHCP) and the left-hand circular polarization (LHCP) is achieved using orthogonal feed circuits on three layers. The both-sided MIC technology is effectively employed in forming this type of slot array antenna. Experimental results show that the proposed antenna has good circular polarization characteristics for both the LHCP and the RHCP. The measured impedance-bandwidth of return loss better than -10 dB are about 47% both for the LHCP and the RHCP. The 3 dB axial ratio bandwidths are 25% (RHCP) and 29% (LHCP). The isolation between the two input ports is better than -35 dB at center frequency of 7.5 GHz.

  • Design of High-Performance Analog Circuits Using Wideband gm-Enhanced MOS Composite Transistors

    Yang TIAN  Pak Kwong CHAN  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:7
      Page(s):
    1199-1208

    In this paper, we present a new composite transistor circuit design technique that provides superior performance enhancement to analog circuits. By adding a composite transistor to the cascode-compensated amplifier, it has achieved a 102 dB DC gain, and a 37.6 MHz unity gain bandwidth while driving a 2 nF heavy capacitive load at a single 1.8 V supply. In the comparison of power-bandwidth and power-speed efficiencies on figures of merit, it offers significantly high values with respect to the reported state-of-the-art works. By employing the composite transistor in a linear regulator powered by a 3.3 V supply to generate a 1.8 V output voltage, it has shown fast recovery response at various load current transients, having a 1% settling time of 0.1 µS for a 50 mA or 100 mA step, while a 1% settling time of 0.36 µS for a maximum 735 mA step under a capacitive load of 10 µF with a 1 Ω ESR resistor. The simulated load regulation is 0.035% and line regulation is 0.488%. Comparing its results with other state-of-art LDO reported results, it also validates the significant enhanced performance of the proposed composite-transistor-based design in terms of speed, current driving capability and stability against changes in environmental parameters. All the proposed designs are simulated using chartered semiconductor (CSM) 1.8 V/3.3 V 0.18 µm CMOS triple-well process technology with thin/thick oxide options and BSIM3 model parameters.

  • Suppression of Guard-Trace Resonance by Matched Termination for Reducing Common-Mode Radiation

    Tetsushi WATANABE  Tohlu MATSUSHIMA  Yoshitaka TOYOTA  Osami WADA  Ryuji KOGA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1746-1753

    We propose a novel technique of matching at both ends of the guard trace to suppress resonance. This approach is derived from the viewpoint that the guard trace acts as a transmission line. We examined that matched termination suppresses guard-trace resonance through simulating a circuit and measuring radiation. We found from these results that the proposed method enables guard-trace voltages to remain low and hence avoids increases in radiation. In addition, we demonstrated that "matched termination at the far end of the guard trace" could suppress guard-trace resonance sufficiently at all frequencies. We eventually found that at least two vias at both ends of the guard trace and only one matching resistor at the far end could suppress guard-trace resonance. With respect to fewer vias, the method we propose has the advantage of reducing restrictions in the printed circuit board layout at the design stage.

  • Band-Broadening Design Technique of CRLH-TLs Dual-Band Branch-Line Couplers Using CRLH-TLs Matching Networks

    Tadashi KAWAI  Miku NAKAMURA  Isao OHTA  Akira ENOKIHARA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1072-1077

    This paper treats a band-broadening design technique of a dual-band branch-line coupler with matching networks composed of an impedance step and a short-circuited stub based on the equivalent admittance approach. By replacing each right-handed transmission line (RH-TL) with a composite right/left-handed transmission line (CRLH-TL), very flat couplings over a relative bandwidth of about 10% can be obtained at two arbitrary operating frequencies in comparison with previous CRLH-TLs branch-line couplers. Furthermore, by adding periodical open-circuited stubs into RH-TLs of the designed CRLH-TLs branch-line coupler with matching networks, the entire size of the coupler can be reduced to about 50%. Verification of these band-broadening and size-reduction design techniques can be also shown by an electromagnetic simulation and experiment.

  • Image Quality Analysis of a Novel Histogram Equalization Method for Image Contrast Enhancement

    Fan-Chieh CHENG  Shanq-Jang RUAN  

     
    PAPER

      Vol:
    E93-D No:7
      Page(s):
    1773-1779

    The use of image contrast enhancement has become increasingly essential due to the need to better show the visual information contained within the image for all vision-based systems. This has lead to motivation for the design of a powerful and accurate automatic contrast enhancement for a digital image. Histogram equalization is the most commonly used contrast enhancement method. However, the conventional histogram equalization methods usually result in excessive contrast enhancement, which causes the unnatural look and visual artifacts of the processed image. In this paper, we propose a novel histogram equalization method using the automatic histogram separation along with the piecewise transformed function. The contrast enhancement results of the proposed method were not only analyzed through qualitative visual inspection and for quantitative accuracy, but are also compared to the results of other state-of-the-art methods.

  • High-Speed Computation of the Kleene Star in Max-Plus Algebraic System Using a Cell Broadband Engine

    Hiroyuki GOTO  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:7
      Page(s):
    1798-1806

    This research addresses a high-speed computation method for the Kleene star of the weighted adjacency matrix in a max-plus algebraic system. We focus on systems whose precedence constraints are represented by a directed acyclic graph and implement it on a Cell Broadband EngineTM (CBE) processor. Since the resulting matrix gives the longest travel times between two adjacent nodes, it is often utilized in scheduling problem solvers for a class of discrete event systems. This research, in particular, attempts to achieve a speedup by using two approaches: parallelization and SIMDization (Single Instruction, Multiple Data), both of which can be accomplished by a CBE processor. The former refers to a parallel computation using multiple cores, while the latter is a method whereby multiple elements are computed by a single instruction. Using the implementation on a Sony PlayStation 3TM equipped with a CBE processor, we found that the SIMDization is effective regardless of the system's size and the number of processor cores used. We also found that the scalability of using multiple cores is remarkable especially for systems with a large number of nodes. In a numerical experiment where the number of nodes is 2000, we achieved a speedup of 20 times compared with the method without the above techniques.

  • Extraction Method of Scallop Area in Gravel Seabed Images for Fishery Investigation

    Koichiro ENOMOTO  Masashi TODA  Yasuhiro KUWAHARA  

     
    PAPER

      Vol:
    E93-D No:7
      Page(s):
    1754-1760

    The quantity and state of fishery resources must be known so that they can be sustained. The fish culture industry is also planning to investigate resources. The results of investigations are used to estimate the catch size, times fish are caught, and future stocks. We have developed a method for extracting scallop areas from gravel seabed images to assess fish resources and also developed an automatic system that measures their quantities, sizes, and states. Japanese scallop farms for fisheries are found on gravel and sand seabeds. The seabed images are used for fishery investigations, which are absolutely necessary to visually estimate, and help us avoid using the acoustic survey. However, there is no automatic technology to measure the quantities, sizes, and states of resources, and so the current investigation technique is the manual measurement by experts. There are varied problems in automating technique. The photography environments have a high degree of noise, including large differences in lighting. Gravel, sand, clay, and debris are also included in the images. In the gravel field, we can see scallop features, such as colors, striped patterns, and fan-like shapes. This paper describes the features of our image extracting method, presents the results, and evaluates its effectiveness.

  • Fast Intra Prediction Mode Decision for H.264/AVC

    Do QUAN  Yo-Sung HO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E93-D No:7
      Page(s):
    2012-2015

    In this letter, we present a simple but efficient intra prediction mode decision for H.264/AVC. Based on our investigation, the DC mode appears to be the superior prediction mode among the various candidates. We propose an intra-mode decision algorithm where the DC mode is chosen as a candidate for the best prediction mode. By experimental results, on average, the proposed algorithm significantly saves 81.905% of the entire encoding time compared to the H.264 reference software; besides, it reduces negligible peak signal-to-noise ratio (PSNR) values and slightly increases bitrates.

  • Dynamic Online Bandwidth Adjustment Scheme Based on Kalai-Smorodinsky Bargaining Solution

    Sungwook KIM  

     
    LETTER-Network Management/Operation

      Vol:
    E93-B No:7
      Page(s):
    1935-1938

    Virtual Private Network (VPN) is a cost effective method to provide integrated multimedia services. Usually heterogeneous multimedia data can be categorized into different types according to the required Quality of Service (QoS). Therefore, VPN should support the prioritization among different services. In order to support multiple types of services with different QoS requirements, efficient bandwidth management algorithms are important issues. In this paper, I employ the Kalai-Smorodinsky Bargaining Solution (KSBS) for the development of an adaptive bandwidth adjustment algorithm. In addition, to effectively manage the bandwidth in VPNs, the proposed control paradigm is realized in a dynamic online approach, which is practical for real network operations. The simulations show that the proposed scheme can significantly improve the system performances.

  • Full-Wave Analysis of Power Distribution Networks in Printed Circuit Boards Open Access

    Francescaromana MARADEI  Spartaco CANIGGIA  Nicola INVERARDI  Mario ROTIGNI  

     
    INVITED PAPER

      Vol:
    E93-B No:7
      Page(s):
    1670-1677

    This paper provides an investigation of power distribution network (PDN) performance by a full-wave prediction tool and by experimental measurements. A set of six real boards characterized by increasing complexity is considered in order to establish a solid base for behaviour understanding of printed circuit boards. How the growing complexity impacts on the board performance is investigated by measurements and by simulations. Strengths and weakness of PDN modeling by the full-wave software tool Microwave Studio are highlighted and discussed.

  • High-Speed Low-Complexity Architecture for Reed-Solomon Decoders

    Yung-Kuei LU  Ming-Der SHIEH  

     
    PAPER-Computer System

      Vol:
    E93-D No:7
      Page(s):
    1824-1831

    This paper presents a high-speed, low-complexity VLSI architecture based on the modified Euclidean (ME) algorithm for Reed-Solomon decoders. The low-complexity feature of the proposed architecture is obtained by reformulating the error locator and error evaluator polynomials to remove redundant information in the ME algorithm proposed by Truong. This increases the hardware utilization of the processing elements used to solve the key equation and reduces hardware by 30.4%. The proposed architecture retains the high-speed feature of Truong's ME algorithm with a reduced latency, achieved by changing the initial settings of the design. Analytical results show that the proposed architecture has the smallest critical path delay, latency, and area-time complexity in comparison with similar studies. An example RS(255,239) decoder design, implemented using the TSMC 0.18 µm process, can reach a throughput rate of 3 Gbps at an operating frequency of 375 MHz and with a total gate count of 27,271.

  • Efficient Modelling Method for Artificial Materials Using Digital Filtering Techniques and EMC Applications

    Hiroki WAKATSUCHI  Stephen GREEDY  John PAUL  Christos CHRISTOPOULOS  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1760-1767

    This paper demonstrates an efficient modelling method for artificial materials using digital filtering (DF) techniques. To demonstrate the efficiency of the DF technique it is applied to an electromagnetic bandgap (EBG) structure and a capacitively-loaded loop the so-called, CLL-based metamaterial. Firstly, this paper describes fine mesh simulations, in which a very small cell size (0.10.10.1 mm3) is used to model the details of an element of the structures to calculate the scattering parameters. Secondly, the scattering parameters are approximated with Padé forms and then factorised. Finally the factorised Padé forms are converted from the frequency domain to the time domain. As a result, the initial features in the fine meshes are effectively embedded into a numerical simulation with the DF boundary, in which the use of a coarse mesh is feasible (1,000 times larger in the EBG structure simulation and 680 times larger in the metamaterial simulation in terms of the volumes). By employing the coarse mesh and removal of the dielectric material calculations, the heavy computational burden required for the fine mesh simulations is mitigated and a fast, efficient and accurate modelling method for the artificial materials is achieved. In the case of the EBG structure the calculation time is reduced from 3 hours to less than 1 minute. In addition, this paper describes an antenna simulation as a specific application example of the DF techniques in electromagnetic compatibility field. In this simulation, an electric field radiated from a dipole antenna is enhanced by the DF boundary which models an artificial magnetic conductor derived from the CLL-based metamaterial. As is shown in the antenna simulation, the DF techniques model efficiently and accurately large-scale configurations.

  • Simulation Modeling of SAM Fuzzy Logic Controllers

    Hae Young LEE  Seung-Min PARK  Tae Ho CHO  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E93-D No:7
      Page(s):
    1984-1986

    This paper presents an approach to implementing simulation models for SAM fuzzy controllers without the use of external components. The approach represents a fuzzy controller as a composition of simple simulation models which involve only basic operations.

  • Evaluation of Extremely Small Sound Source Signals Used in Speaking-Aid System with Statistical Voice Conversion

    Keigo NAKAMURA  Tomoki TODA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E93-D No:7
      Page(s):
    1909-1917

    We have so far proposed a speaking-aid system for laryngectomees using a statistical voice conversion technique. In the proposed system, artificial speech articulated with extremely small sound source signals is detected with a Non-Audible Murmur (NAM) microphone, and then, the detected artificial speech is converted into more natural voice in a probabilistic manner. Although this system basically allows laryngectomees to speak while keeping the external source signals silent, it is still questionable how much these new sound source signals affect the converted speech quality. In this paper, we investigate the impact of various sound source signals on voice conversion accuracy. Various small sound source signals are designed by changing the spectral envelope and the waveform power independently. We conduct objective and subjective evaluations. The results of these experimental evaluations demonstrate that voice conversion accepts 1) various sound source signals with different spectral envelopes and 2) large degree of power of the sound source signals unless the power of speaking parts is almost equal to that of silence parts. Moreover, we also investigate the effectiveness of enhancing auditory feedback during speaking with the extremely small sound source signals.

  • Decomposition Optimization for Minimizing Label Overflow in Prime Number Graph Labeling

    Jaehoon KIM  Seog PARK  

     
    PAPER-Dependable Computing

      Vol:
    E93-D No:7
      Page(s):
    1889-1899

    Recently, a graph labeling technique based on prime numbers has been suggested for reducing the costly transitive closure computations in RDF query languages. The suggested prime number graph labeling provides the benefit of fast query processing by a simple divisibility test of labels. However, it has an inherent problem that originates with the nature of prime numbers. Since each prime number must be used exclusively, labels can become significantly large. Therefore, in this paper, we introduce a novel optimization technique to effectively reduce the problem of label overflow. The suggested idea is based on graph decomposition. When label overflow occurs, the full graph is divided into several sub-graphs, and nodes in each sub-graph are separately labeled. Through experiments, we also analyze the effectiveness of the graph decomposition optimization, which is evaluated by the number of divisions.

  • Segmentation of the Speaker's Face Region with Audiovisual Correlation

    Yuyu LIU  Yoichi SATO  

     
    PAPER-Multimedia Pattern Processing

      Vol:
    E93-D No:7
      Page(s):
    1965-1975

    The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.

  • K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier

    Tomoyuki SHIBATA  Toshikazu WADA  

     
    PAPER

      Vol:
    E93-D No:7
      Page(s):
    1670-1681

    This paper presents a novel algorithm for Nearest Neighbor (NN) classifier. NN classification is a well-known method of pattern classification having the following properties: * it performs maximum-margin classification and achieves less than twice the ideal Bayesian error, * it does not require knowledge of pattern distributions, kernel functions or base classifiers, and * it can naturally be applied to multiclass classification problems. Among the drawbacks are A) inefficient memory use and B) ineffective pattern classification speed. This paper deals with the problems A and B. In most cases, NN search algorithms, such as k-d tree, are employed as a pattern search engine of the NN classifier. However, NN classification does not always require the NN search. Based on this idea, we propose a novel algorithm named k-d decision tree (KDDT). Since KDDT uses Voronoi-condensed prototypes, it consumes less memory than naive NN classifiers. We have confirmed that KDDT is much faster than NN search-based classifier through a comparative experiment (from 9 to 369 times faster than NN search based classifier). Furthermore, in order to extend applicability of the KDDT algorithm to high-dimensional NN classification, we modified it by incorporating Gabriel editing or RNG editing instead of Voronoi condensing. Through experiments using simulated and real data, we have confirmed the modified KDDT algorithms are superior to the original one.

  • A Differential MIMO SC-FDE Transceiver Design over Multipath Fast Fading Channels

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1939-1942

    In this paper, we propose a new differential MIMO single-carrier system with frequency-domain equalization (SC-FDE) aided by the insertion of cyclic prefix. This block transmission system not only inherits all the merits of the SISO SC-FDE system, but is also equipped with a differential space-time block coding (DSTBC) such as to combat the fast-changing frequency selective fading channels without the needs to estimate and then compensate the channel effects. Hence, for practical applications, it has the additional merits of decoding simplicity and robustness against high mobility transmission environments. Computer simulations show that the proposed system can provide diversity benefit as the non-differential system does, while greatly reducing the receiver complexity.

6381-6400hit(16314hit)