The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

6481-6500hit(16314hit)

  • A Near 1-V Operational, 0.18-µm CMOS Passive Sigma-Delta Modulator with 77 dB of Dyanamic Range

    Toru SAI  Yasuhiro SUGIMOTO  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    747-754

    A low-voltage operational capability near 1 V along with low noise and distortion characteristics have been realized in a passive sigma-delta modulator. To achieve low-voltage operation, the dc voltage in signal paths in the switched-capacitor-filter section was set to be 0.2 V so that sufficient gate-to-source voltages were obtained for metal-oxide-semiconductor (MOS) switches in signal paths without using a gate-voltage boosting technique. In addition, the input switch that connects the input signal from the outside to the inside of an integrated circuit chip was replaced by a passive resistor to eliminate a floating switch, and gain coefficients in the feedback and input paths were modified so that the bias voltage of the digital-to-analog converter could be set to VDD and 0 V to easily activate MOS switches. As the signal swing becomes small under low-voltage operational circumstances, correlated double sampling was used to suppress the offset voltage and the 1/f noise that appeared at the input of a comparator. The modulator was fabricated using a standard CMOS 0.18-µm process, and the measured results show that the modulator realized 77 dB of dynamic range for 40 kHz of signal bandwidth with a 40 MHz sampling rate while dissipating 2 mW from a 1.1 V supply voltage.

  • A 1-GHz Tuning Range DCO with a 3.9 kHz Discrete Tuning Step for UWB Frequency Synthesizer

    Chul NAM  Joon-Sung PARK  Young-Gun PU  Kang-Yoon LEE  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    770-776

    This paper presents a wide range DCO with fine discrete tuning steps using a ΣΔ modulation technique for UWB frequency synthesizer. The proposed discrete tuning scheme provides a low effective frequency resolution without any degradation of the phase noise performance. With its three step discrete tunings, the DCO simultaneously has a wide tuning range and fine tuning steps. The frequency synthesizer was implemented using 0.13 µm CMOS technology. The tuning range of the DCO is 5.8-6.8 GHz with an effective frequency resolution of 3.9 kHz. It achieves a measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range of 16.8% with the power consumption of 5.9 mW. The figure of merit with the tuning range is -181.5 dBc/Hz.

  • A De-Embedding Method Using Different-Length Transmission Lines for mm-Wave CMOS Device Modeling

    Naoki TAKAYAMA  Kota MATSUSHITA  Shogo ITO  Ning LI  Keigo BUNSEN  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    812-819

    This paper proposes a de-embedding method for on-chip S-parameter measurements at mm-wave frequency. The proposed method uses only two transmission lines with different length. In the proposed method, a parasitic-component model extracted from two transmission lines can be used for de-embedding for other-type DUTs like transistor, capacitor, inductor, etc. The experimental results show that the error in characteristic impedance between the different-length transmission lines is less than 0.7% above 40 GHz. The extracted pad model is also shown.

  • Evaluation of Reliable Multicast Delivery in Base Station Diversity Systems

    Katsuhiro NAITO  Kazuo MORI  Hideo KOBAYASHI  

     
    LETTER-Internet

      Vol:
    E93-B No:6
      Page(s):
    1615-1619

    This paper proposes a multicast delivery system using base station diversity for cellular systems. Conventional works utilize single wireless link communication to achieve reliable multicast. In cellular systems, received signal intensity declines in cell edge areas. Therefore, wireless terminals in cell edge areas suffer from many transmission errors due to low received signal intensity. Additionally, multi-path fading also causes dynamic fluctuation of received signal intensity. Wireless terminals also suffer from transmission errors due to the multi-path fading. The proposed system utilizes multiple wireless link communication to improve transmission performance. Each wireless terminal communicates with some neighbor base stations, and combines frame information which arrives from different base stations. Numerical results demonstrate that the proposed system can achieve multicast data delivery with a short transmission period and can reduce consumed wireless resource due to retransmission.

  • Adaptive Training for Voice Conversion Based on Eigenvoices

    Yamato OHTANI  Tomoki TODA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:6
      Page(s):
    1589-1598

    In this paper, we describe a novel model training method for one-to-many eigenvoice conversion (EVC). One-to-many EVC is a technique for converting a specific source speaker's voice into an arbitrary target speaker's voice. An eigenvoice Gaussian mixture model (EV-GMM) is trained in advance using multiple parallel data sets consisting of utterance-pairs of the source speaker and many pre-stored target speakers. The EV-GMM can be adapted to new target speakers using only a few of their arbitrary utterances by estimating a small number of adaptive parameters. In the adaptation process, several parameters of the EV-GMM to be fixed for different target speakers strongly affect the conversion performance of the adapted model. In order to improve the conversion performance in one-to-many EVC, we propose an adaptive training method of the EV-GMM. In the proposed training method, both the fixed parameters and the adaptive parameters are optimized by maximizing a total likelihood function of the EV-GMMs adapted to individual pre-stored target speakers. We conducted objective and subjective evaluations to demonstrate the effectiveness of the proposed training method. The experimental results show that the proposed adaptive training yields significant quality improvements in the converted speech.

  • Enhanced Cancelable Biometrics for Online Signature Verification

    Daigo MURAMATSU  Manabu INUMA  Junji SHIKATA  Akira OTSUKA  

     
    LETTER-Analog Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1254-1259

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  • A Swing Level Controlled Transmitter for Single-Ended Signaling with Center-Tapped Termination

    Young-Chan JANG  

     
    BRIEF PAPER

      Vol:
    E93-C No:6
      Page(s):
    861-863

    A swing level controlled voltage-mode transmitter is proposed to support a stub series-terminated logic channel with center-tapped termination. This transmitter provides a swing level control to support the diagnostic mode and improve the signal integrity in the absence of the destination termination. By using the variable parallel termination, the proposed transmitter maintains the constant output impedance of the source termination while the swing level is controlled. Also, the series termination using an external resistor is used to reduce the impedance mismatch effect due to the parasitic components of the capacitor and inductor. To verify the proposed transmitter, the voltage-mode driver, which provides eight swing levels with the constant output impedance of about 50 Ω, was implemented using a 70 nm 1-poly 3-metal DRAM process with a 1.5 V supply. The jitter reduction of 54% was measured with the swing level controlled voltage-mode driver in the absence of the destination termination at 1.6-Gb/s.

  • An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    Yuji OKAZAKI  Takanori UNO  Hideki ASAI  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    827-834

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  • Analysis and Modeling of a Priority Inversion Scheme for Starvation Free Controller Area Networks

    Cheng-Min LIN  

     
    PAPER-Software System

      Vol:
    E93-D No:6
      Page(s):
    1504-1511

    Control Area Network (CAN) development began in 1983 and continues today. The forecast for annual world production in 2008 is approximately 65-67 million vehicles with 10-15 CAN nodes per vehicle on average . Although the CAN network is successful in automobile and industry control because the network provides low cost, high reliability, and priority messages, a starvation problem exists in the network because the network is designed to use a fixed priority mechanism. This paper presents a priority inversion scheme, belonging to a dynamic priority mechanism to prevent the starvation problem. The proposed scheme uses one bit to separate all messages into two categories with/without inverted priority. An analysis model is also constructed in this paper. From the model, a message with inverted priority has a higher priority to be processed than messages without inverted priority so its mean waiting time is shorter than the others. Two cases with and without inversion are implemented in our experiments using a probabilistic model checking tool based on an automatic formal verification technique. Numerical results demonstrate that low-priority messages with priority inversion have better expression in the probability in a full queue state than others without inversion. However, our scheme is very simple and efficient and can be easily implemented at the chip level.

  • An Enhanced Dual-Path ΔΣ A/D Converter

    Yoshio NISHIDA  Koichi HAMASHITA  Gabor C. TEMES  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:6
      Page(s):
    884-892

    This paper presents an enhanced dual-path delta-sigma analog-to-digital converter. Compared with other architectures, the enhanced architecture increases the noise shaping order without any instability problems and displays analog complexity equivalent to the multi-stage noise shaping architecture. Our delta-sigma converter is based on this new architecture. It employs not only doubly-differential structure to reduce common-mode errors in the system-level but also delayed-feed-in structure to mitigate the timing constraint of the feedback signal. Regarding the circuit implementation, the first-order enhancement of the quantization noise shaping is achieved via the use of a switched capacitor circuit technique. The circuit is incorporated into the active adder in a low-distortion structure. The supporting clock generation circuit that provides additional phases of clocks with the enhancement block is also implemented in the CMOS logic gates. A digital dynamic element matching circuit (i.e., segmented data-weighted-average circuit) is designed to reduce mismatch errors caused by the feedback DAC of modulator. A test chip, fabricated in a 0.18-µm CMOS process, provides a signal-to-noise+distortion ratio (SNDR) of 75-dB for a 1.0-MHz signal bandwidth clocked at 40-MHz. The 2nd harmonic is -101 dB and the 3rd harmonic is -94 dB when a -4.5-dB 100-kHz input signal is applied.

  • A 5 GHz Band Low Noise and Wide Tuning Range Si-CMOS VCO with a Novel Varactors Pair Circuit

    Tuan Thanh TA  Suguru KAMEDA  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    755-762

    In this paper, a fully integrated 5 GHz voltage controlled oscillator (VCO) is presented. The VCO is designed with 0.18 µm silicon complementary metal oxide semiconductor (Si-CMOS) process. To achieve low phase noise, a novel varactors pair circuit is proposed to cancel effects of capacitance fluctuation that makes harmonic currents which increase phase noise of VCO. The VCO with the proposed varactor circuit has tuning range from 5.1 GHz to 6.1 GHz (relative value of 17.9%) and phase noise of lower than -110.8 dBc/Hz at 1 MHz offset over the full tuning range. Figure-of-merit-with-tuning-range (FOMT) of the proposed VCO is -182 dBc/Hz.

  • Error Analysis and Numerical Stabilization of the Fast H Filter

    Tomonori KATSUMATA  Kiyoshi NISHIYAMA  Katsuaki SATOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1153-1162

    The fast H∞ filter is developed by one of the authors, and its practical use in industries is expected. This paper derives a linear propagation model of numerical errors in the recursive variables of the fast H∞ filter, and then theoretically analyzes the stability of the filter. Based on the analyzed results, a numerical stabilization method of the fast H∞ filter is proposed with the error feedback control in the backward prediction. Also, the effectiveness of the stabilization method is verified using numerical examples.

  • Uniform Superposition for Wireless Multimedia Multicast with No Channel Side Information

    Wonjong NOH  

     
    LETTER-Broadcast Systems

      Vol:
    E93-B No:5
      Page(s):
    1342-1345

    In this paper, we study multi-layer transmission for wireless multimedia multicast in a cell. Under the assumptions that the users in a cell are uniformly well distributed and that the BS has no channel side information, we find the optimal number of transmission layers and power allocation. This result can be used in highly dynamic dense networks and jamming networks where channel side information at the transmitter is somewhat useless.

  • Frequency Rotation for Suppressing Multipath Interference and Achieving Large Frequency Diversity in Uplink IFDMA

    Osamu TAKYU  Yohtaro UMEDA  Masao NAKAGAWA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:5
      Page(s):
    1284-1288

    Two novel frequency rotation techniques that suppress multipath interference and increase the frequency diversity gain are proposed for uplink IFDMA systems. These benefits are especially important as the performance of traditional IFDMA falls significantly when the number of simultaneous accessing users becomes large. Frequency rotation was originally proposed to suppress the multipath interference and enlarge the frequency diversity gain of downlink access. Unfortunately, it cannot be applied to the uplink due to the loss of orthogonality among users in the frequency domain. In the proposed frequency rotation techniques, users do not share the multiple frequency orthogonal channels and thus orthogonality among users is maintained. The proposed technique is verified by computer simulations.

  • Packet Classification with Hierarchical Cross-Producting

    Chun-Liang LEE  Chia-Tai CHAN  Pi-Chung WANG  

     
    PAPER

      Vol:
    E93-D No:5
      Page(s):
    1117-1126

    Packet classification has become one of the most important application techniques in network security since the last decade. The technique involves a traffic descriptor or user-defined criteria to categorize packets to a specific forwarding class which will be accessible for future security handling. To achieve fast packet classification, we propose a new scheme, Hierarchical Cross-Producting. This approach simplifies the classification procedure and decreases the distinct combinations of fields by hierarchically decomposing the multi-dimensional space based on the concept of telescopic search. Analogous to the use of telescopes with different powers**, a multiple-step process is used to search for targets. In our scheme, the multi-dimensional space is endowed with a hierarchical property which self-divides into several smaller subspaces, whereas the procedure of packet classification is translated into recursive searching for matching subspaces. The required storage of our scheme could be significantly reduced since the distinct field specifications of subspaces is manageable. The performance are evaluated based on both real and synthetic filter databases. The experimental results demonstrate the effectiveness and scalability of the proposed scheme.

  • Kernel Based Image Registration Incorporating with Both Feature and Intensity Matching

    Quan MIAO  Guijin WANG  Xinggang LIN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E93-D No:5
      Page(s):
    1317-1320

    Image sequence registration has attracted increasing attention due to its significance in image processing and computer vision. In this paper, we put forward a new kernel based image registration approach, combining both feature-based and intensity-based methods. The proposed algorithm consists of two steps. The first step utilizes feature points to roughly estimate a motion parameter between successive frames; the second step applies our kernel based idea to align all the frames to the reference frame (typically the first frame). Experimental results using both synthetic and real image sequences demonstrate that our approach can automatically register all the image frames and be robust against illumination change, occlusion and image noise.

  • Call Admission Control with Load-Balancing Capability in Integrated Cellular/WLAN Networks

    Weiwei XIA  Lianfeng SHEN  

     
    PAPER-Network

      Vol:
    E93-B No:5
      Page(s):
    1190-1204

    We propose a call admission control scheme in cellular and wireless local area networks (WLANs) integration: integrated service-based admission control with load-balancing capability (ISACL). The novel aspects of the ISACL scheme include that load transfer in the cellular/WLAN overlapping areas is allowed for the admission of originating data calls from the area with cellular access only and vertical handoff requests to the cellular network. Packet-level quality of service (QoS) constraints in the WLANs and other-cell interference in the code division multiple access (CDMA) cellular network are taken into account to derive the WLANs and cellular capacity. We model the integrated networks using a multi-dimensional Markov chain and the important performance measures are derived for effective optimization of the admission parameters. The analytical model is validated by a computer simulation. The variation of admission parameters with traffic load and the dependence of resource utilization on admission parameters are investigated. It is shown that optimal balancing of the traffic load between the cellular network and WLANs results in the maximum resource utilization. Numerical results demonstrate that substantial performance improvements can be achieved by applying the proposed ISACL scheme.

  • Gaussian Kernel-Based Multi-Histogram Equalization

    Suk Tae SEO  In Keun LEE  Hye Cheun JEONG  Soon Hak KWON  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E93-D No:5
      Page(s):
    1313-1316

    Histogram equalization is the most popular method for image enhancement. However it has some drawbacks: i) it causes undesirable artifacts and ii) it can degrade the visual quality. To overcome the drawbacks, in this letter, multi-histogram equalization on smoothed histogram using a Gaussian kernel is proposed. To demonstrate the effectiveness, the method is tested on several images and compared with conventional methods.

  • Towards Reliable E-Government Systems with the OTS/CafeOBJ Method

    Weiqiang KONG  Kazuhiro OGATA  Kokichi FUTATSUGI  

     
    PAPER-Formal Specification

      Vol:
    E93-D No:5
      Page(s):
    974-984

    System implementation for e-Government initiatives should be reliable. Unreliable system implementation could, on the one hand, be insufficient to fulfill basic system requirements, and more seriously on the other hand, break the trust of citizens on governments. The objective of this paper is to advocate the use of formal methods in general, the OTS/CafeOBJ method in particular in this paper, to help develop reliable system implementation for e-Government initiatives. An experiment with the OTS/CafeOBJ method on an e-Government messaging framework proposed for providing citizens with seamless public services is described to back up our advocation. Two previously not well-clarified problems of the framework and their potential harm realized in this experiment are reported, and possible ways of revisions to the framework are suggested as well. The revisions are proved to be sufficient for making the framework satisfy certain desired properties.

  • Computer Algebra System as Test Generation System

    Satoshi HATTORI  

     
    PAPER-Software Testing

      Vol:
    E93-D No:5
      Page(s):
    1006-1017

    We try to use a computer algebra system Mathematica as a test case generation system. In test case generation, we generally need to solve equations and inequalities. The main reason why we take Mathematica is because it has a built-in function to solve equations and inequalities. In this paper, we deal with both black-box testing and white-box testing. First, we show two black-box test case generation procedures described in Mathematica. The first one is based on equivalence partitioning. Mathematica explicitly shows a case that test cases do no exist. This is an advantage in using Mathematica. The second procedure is a modification of the first one adopting boundary value analysis. For implementation of boundary value analysis, we give a formalization for it. Next, we show a white-box test case generation procedure. For this purpose, we also give a model for source programs. It is like a control flow graph model. The proposed procedure analyzes a model description of a program.

6481-6500hit(16314hit)