The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

7941-7960hit(16314hit)

  • Noisy Speech Recognition Based on Integration/Selection of Multiple Noise Suppression Methods Using Noise GMMs

    Norihide KITAOKA  Souta HAMAGUCHI  Seiichi NAKAGAWA  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    411-421

    To achieve high recognition performance for a wide variety of noise and for a wide range of signal-to-noise ratio, this paper presents methods for integration of four noise reduction algorithms: spectral subtraction with smoothing of time direction, temporal domain SVD-based speech enhancement, GMM-based speech estimation and KLT-based comb-filtering. In this paper, we proposed two types of combination methods of noise suppression algorithms: selection of front-end processor and combination of results from multiple recognition processes. Recognition results on the CENSREC-1 task showed the effectiveness of our proposed methods.

  • Feature Compensation Employing Multiple Environmental Models for Robust In-Vehicle Speech Recognition

    Wooil KIM  John H.L. HANSEN  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    430-438

    An effective feature compensation method is developed for reliable speech recognition in real-life in-vehicle environments. The CU-Move corpus, used for evaluation, contains a range of speech and noise signals collected for a number of speakers under actual driving conditions. PCGMM-based feature compensation, considered in this paper, utilizes parallel model combination to generate noise-corrupted speech model by combining clean speech and the noise model. In order to address unknown time-varying background noise, an interpolation method of multiple environmental models is employed. To alleviate computational expenses due to multiple models, an Environment Transition Model is employed, which is motivated from Noise Language Model used in Environmental Sniffing. An environment dependent scheme of mixture sharing technique is proposed and shown to be more effective in reducing the computational complexity. A smaller environmental model set is determined by the environment transition model for mixture sharing. The proposed scheme is evaluated on the connected single digits portion of the CU-Move database using the Aurora2 evaluation toolkit. Experimental results indicate that our feature compensation method is effective for improving speech recognition in real-life in-vehicle conditions. A reduction of 73.10% of the computational requirements was obtained by employing the environment dependent mixture sharing scheme with only a slight change in recognition performance. This demonstrates that the proposed method is effective in maintaining the distinctive characteristics among the different environmental models, even when selecting a large number of Gaussian components for mixture sharing.

  • Effective Domain Partitioning for Multi-Clock Domain IP Core Wrapper Design under Power Constraints

    Thomas Edison YU  Tomokazu YONEDA  Danella ZHAO  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:3
      Page(s):
    807-814

    The rapid advancement of VLSI technology has made it possible for chip designers and manufacturers to embed the components of a whole system onto a single chip, called System-on-Chip or SoC. SoCs make use of pre-designed modules, called IP-cores, which provide faster design time and quicker time-to-market. Furthermore, SoCs that operate at multiple clock domains and very low power requirements are being utilized in the latest communications, networking and signal processing devices. As a result, the testing of SoCs and multi-clock domain embedded cores under power constraints has been rapidly gaining importance. In this research, a novel method for designing power-aware test wrappers for embedded cores with multiple clock domains is presented. By effectively partitioning the various clock domains, we are able to increase the solution space of possible test schedules for the core. Since previous methods were limited to concurrently testing all the clock domains, we effectively remove this limitation by making use of bandwidth conversion, multiple shift frequencies and properly gating the clock signals to control the shift activity of various core logic elements. The combination of the above techniques gains us greater flexibility when determining an optimal test schedule under very tight power constraints. Furthermore, since it is computationally intensive to search the entire expanded solution space for the possible test schedules, we propose a heuristic 3-D bin packing algorithm to determine the optimal wrapper architecture and test schedule while minimizing the test time under power and bandwidth constraints.

  • Reversible Steganographic Method with High Payload for JPEG Images

    Chih-Yang LIN  Chin-Chen CHANG  Yu-Zheng WANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:3
      Page(s):
    836-845

    This paper presents a lossless steganography method based on the multiple-base notation approach for JPEG images. Embedding a large amount of secret data in a JPEG-compressed image is a challenge since modifying the quantized DCT coefficients may cause serious image distortion. We propose two main strategies to deal with this problem: (1) we embed the secret values in the middle-frequency of the quantized DCT coefficients, and (2) we limit the number of nonzero values of the quantized DCT coefficients that participate in the embedding process. We also investigated the effect of modifying the standard quantization table. The experimental results show that the proposed method can embed twice as much secret data as the irreversible embedding method of Iwata et al. under the same number of embedded sets. The results also demonstrate how three important factors: (1) the quantization table, (2) the number of selected nonzero quantized DCT coefficients, and (3) the number of selected sets, influence the image quality and embedding capacity.

  • Post-BIST Fault Diagnosis for Multiple Faults

    Hiroshi TAKAHASHI  Yoshinobu HIGAMI  Shuhei KADOYAMA  Yuzo TAKAMATSU  Koji YAMAZAKI  Takashi AIKYO  Yasuo SATO  

     
    LETTER

      Vol:
    E91-D No:3
      Page(s):
    771-775

    With the increasing complexity of LSI, Built-In Self Test (BIST) is a promising technique for production testing. We herein propose a method for diagnosing multiple stuck-at faults based on the compressed responses from BIST. We refer to fault diagnosis based on the ambiguous test pattern set obtained by the compressed responses of BIST as post-BIST fault diagnosis [1]. In the present paper, we propose an effective method by which to perform post-BIST fault diagnosis for multiple stuck-at faults. The efficiency of the success ratio and the feasibility of diagnosing large circuits are discussed.

  • New Recursive Least Squares Algorithms without Using the Initial Information

    Jung Hun PARK  Zhonghua QUAN  Soohee HAN  Wook Hyun KWON  

     
    LETTER-Navigation, Guidance and Control Systems

      Vol:
    E91-B No:3
      Page(s):
    968-971

    In this letter, we propose a new type of recursive least squares (RLS) algorithms without using the initial information of a parameter or a state to be estimated. The proposed RLS algorithm is first obtained for a generic linear model and is then extended to a state estimator for a stochastic state-space model. Compared with the existing algorithms, the proposed RLS algorithms are simpler and more numerically stable. It is shown through simulation that the proposed RLS algorithms have better numerical stability for digital computations than existing algorithms.

  • A Method of Locating Open Faults on Incompletely Identified Pass/Fail Information

    Koji YAMAZAKI  Yuzo TAKAMATSU  

     
    PAPER-Fault Diagnosis

      Vol:
    E91-D No:3
      Page(s):
    661-666

    In order to reduce the test cost, built-in self test (BIST) is widely used. One of the serious problems of BIST is that the compacted signature in BIST has very little information for fault diagnosis. Especially, it is difficult to determine which tests detect a fault. Therefore, it is important to develop an efficient fault diagnosis method by using incompletely identified pass/fail information. Where the incompletely identified pass/fail information means that a failing test block consists of at least one failing test and some passing tests, and all of the tests in passing test blocks are the passing test. In this paper, we propose a method to locate open faults by using incompletely identified pass/fail information. Experimental results for ISCAS'85 and ITC'99 benchmark circuits show that the number of candidate faults becomes less than 5 in many cases.

  • Likelihood Estimation for Reduced-Complexity ML Detectors in a MIMO Spatial-Multiplexing System

    Masatsugu HIGASHINAKA  Katsuyuki MOTOYOSHI  Akihiro OKAZAKI  Takayuki NAGAYASU  Hiroshi KUBO  Akihiro SHIBUYA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    837-847

    This paper proposes a likelihood estimation method for reduced-complexity maximum-likelihood (ML) detectors in a multiple-input multiple-output (MIMO) spatial-multiplexing (SM) system. Reduced-complexity ML detectors, e.g., Sphere Decoder (SD) and QR decomposition (QRD)-M algorithm, are very promising as MIMO detectors because they can estimate the ML or a quasi-ML symbol with very low computational complexity. However, they may lose likelihood information about signal vectors having the opposite bit to the hard decision and bit error rate performance of the reduced-complexity ML detectors are inferior to that of the ML detector when soft-decision decoding is employed. This paper proposes a simple estimation method of the lost likelihood information suitable for the reduced-complexity ML detectors. The proposed likelihood estimation method is applicable to any reduced-complexity ML detectors and produces accurate soft-decision bits. Computer simulation confirms that the proposed method provides excellent decoding performance, keeping the advantage of low computational cost of the reduced-complexity ML detectors.

  • The Temperature Dependence of a GaAs pHEMT Wideband IQ Modulator IC

    Kiyoyuki IHARA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:3
      Page(s):
    366-372

    The author developed a GaAs wideband IQ modulator IC, which is utilized in RF signal source instruments with direct-conversion architecture. The layout is fully symmetric to obtain a temperature-stable operation. However, the actual temperature drift of EVM (Error Vector Magnitude) is greater in some frequency and temperature ranges than the first generation IC of the same architecture. For applications requiring the precision of electric instrumentation, temperature drift is highly critical. This paper clarifies that linear phase error is the dominant factor causing the temperature drift. It also identifies that such temperature drift of linear phase error is due to equivalent series impedance, especially parasitic capacitance of the phase shifter. This effect is verified by comparing the SSB measurements to a mathematical simulation using an empirical temperature-dependent small-signal FET model.

  • Filtering in Generalized Signal-Dependent Noise Model Using Covariance Information

    Seiichi NAKAMORI  María J. GARCIA-LIGERO  Aurora HERMOSO-CARAZO  Josefa LINARES-PEREZ  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:3
      Page(s):
    809-817

    In this paper, we propose a recursive filtering algorithm to restore monochromatic images which are corrupted by general dependent additive noise. It is assumed that the equation which describes the image field is not available and a filtering algorithm is obtained using the information provided by the covariance functions of the signal, noise that affects the measurement equation, and the fourth-order moments of the signal. The proposed algorithm is obtained by an innovation approach which provides a simple derivation of the least mean-squared error linear estimators. The estimation of the grey level in each spatial coordinate is made taking into account the information provided by the grey levels located on the row of the pixel to be estimated. The proposed filtering algorithm is applied to restore images which are affected by general signal-dependent additive noise.

  • Bit-Serial Single Flux Quantum Microprocessor CORE

    Akira FUJIMAKI  Masamitsu TANAKA  Takahiro YAMADA  Yuki YAMANASHI  Heejoung PARK  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    342-349

    We describe the development of single-flux-quantum (SFQ) microprocessors and the related technologies such as designing, circuit architecture, microarchitecture, etc. Since the microprocessors studied here aim for a general-purpose computing system, we employ the complexity-reduced (CORE) architecture in which the high-speed nature of the SFQ circuits is used not for increasing processor performance but for reducing the circuit complexity. The bit-serial processing is the most suitable way to realize the CORE architecture. We assembled all the best technologies concerning SFQ integrated circuits and designed the SFQ microprocessors, CORE1α, CORE1β, and CORE1γ. The CORE1β was made up of about 11000 Josephson junctions and successfully demonstrated. The peak performance reached 1400 million operations per second with a power consumption of 3.4 mW. We showed that the SFQ microprocessors had an advantage in a performance density to semiconductor's ones, which lead to the potential for constructing a high performance SFQ-circuit-based computing system.

  • Development of Cryopackaging and I/O Technologies for High-Speed Superconductive Digital Systems

    Yoshihito HASHIMOTO  Shinichi YOROZU  Yoshio KAMEDA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    325-332

    A cryocooled system with I/O interface circuits, which enables high-speed system operation of superconductive single-flux-quantum (SFQ) circuits at over 40 GHz, and the demonstration of a 47-Gbps SFQ 22 switch system are presented. The cryocooled system has 32 I/Os and cools an SFQ multi-chip module (MCM) to 4 K with a two-stage 1-W Gifford-McMahon cryocooler. An SFQ 4:1 multiplexer (MUX) and an SFQ 1:4 demultiplexer (DEMUX) have been designed to interface the speed gap between the I/O (~10 Gbps/ch) and SFQ circuits (>40 GHz). An SFQ 22 switch chip, in which the MUX/DEMUX and an SFQ 22 switch are integrated, and an 8-channel superconductive voltage driver (SVD) chip have been designed with an advanced cell library for a junction critical current density of 10 kA/cm2. An SFQ 22 switch MCM has been made by flip-chip bonding the switch chip and SVD chip on a superconductive MCM carrier with φ 50-µm InSn solder bumps. An SFQ 22 switch system, which is the switch MCM packaged in the cryocooled system, has been demonstrated up to a port speed of 47 Gbps for the first time.

  • Proposal of a Desk-Side Supercomputer with Reconfigurable Data-Paths Using Rapid Single-Flux-Quantum Circuits

    Naofumi TAKAGI  Kazuaki MURAKAMI  Akira FUJIMAKI  Nobuyuki YOSHIKAWA  Koji INOUE  Hiroaki HONDA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    350-355

    We propose a desk-side supercomputer with large-scale reconfigurable data-paths (LSRDPs) using superconducting rapid single-flux-quantum (RSFQ) circuits. It has several sets of computing unit which consists of a general-purpose microprocessor, an LSRDP and a memory. An LSRDP consists of a lot of, e.g., a few thousand, floating-point units (FPUs) and operand routing networks (ORNs) which connect the FPUs. We reconfigure the LSRDP to fit a computation, i.e., a group of floating-point operations, which appears in a 'for' loop of numerical programs by setting the route in ORNs before the execution of the loop. We propose to implement the LSRDPs by RSFQ circuits. The processors and the memories can be implemented by semiconductor technology. We expect that a 10 TFLOPS supercomputer, as well as a refrigerating engine, will be housed in a desk-side rack, using a near-future RSFQ process technology, such as 0.35 µm process.

  • Superconductor Digital Electronics Past, Present, and Future

    Theodore Van DUZER  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    260-271

    This paper presents the history of superconductor digital circuits starting from several years after the discovery of the Josephson junction in 1962. The first two decades were mainly devoted to developing voltage-state logic, which is similar to semiconductor logic. Research on circuits employing the manipulation of single magnetic flux quanta resulted in a form called RSFQ in the mid-1980s; this is the basis of superconductor logic systems of today. The more difficult problem of random access memory is reviewed. We analyze the present status of the field and outline the work that lies ahead to realize a successful superconductor digital technology.

  • Multichannel Linear Prediction Method Compliant with the MPEG-4 ALS

    Yutaka KAMAMOTO  Noboru HARADA  Takehiro MORIYA  

     
    PAPER-Audio Coding

      Vol:
    E91-A No:3
      Page(s):
    756-762

    A new linear prediction analysis method for multichannel signals was devised, with the goal of enhancing the compression performance of the MPEG-4 Audio Lossless Coding (ALS) compliant encoder and decoder. The multichannel coding tool for this standard carries out an adaptively weighted subtraction of the residual signals of the coding channel from those of the reference channel, both of which are produced by independent linear prediction. Our linear prediction method tries to directly minimize the amplitude of the predicted residual signal after subtraction of the signals of the coding channel, and the method has been implemented in the MPEG-4 ALS codec software. The results of a comprehensive evaluation show that this method reduces the size of a compressed file. The maximum improvement of the compression ratio is 14.6% which is achieved at the cost of a small increase in computational complexity at the encoder and without increase in decoding time. This is a practical method because the compressed bitstream remains compliant with the MPEG-4 ALS standard.

  • Improved Fading Scheme for Spatio-Temporal Error Concealment in Video Transmission

    Min-Cheol HWANG  Jun-Hyung KIM  Chun-Su PARK  Sung-Jea KO  

     
    PAPER-Image Coding and Video Coding

      Vol:
    E91-A No:3
      Page(s):
    740-748

    Error concealment at a decoder is an efficient method to reduce the degradation of visual quality caused by channel errors. In this paper, we propose a novel spatio-temporal error concealment algorithm based on the spatial-temporal fading (STF) scheme which has been recently introduced. Although STF achieves good performance for the error concealment, several drawbacks including blurring still remain in the concealed blocks. To alleviate these drawbacks, in the proposed method, hybrid approaches with adaptive weights are proposed. First, the boundary matching algorithm and the decoder motion vector estimation which are well-known temporal error concealment methods are adaptively combined to compensate for the defect of each other. Then, an edge preserved method is utilized to reduce the blurring effects caused by the bilinear interpolation for spatial error concealment. Finally, two concealed results obtained by the hybrid spatial and temporal error concealment are pixel-wisely blended with adaptive weights. Experimental results exhibit that the proposed method outperforms conventional methods including STF in terms of the PSNR performance as well as subjective visual quality, and the computational complexity of the proposed method is similar to that of STF.

  • A Sparse Decomposition Method for Periodic Signal Mixtures

    Makoto NAKASHIZUKA  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:3
      Page(s):
    791-800

    This study proposes a method to decompose a signal into a set of periodic signals. The proposed decomposition method imposes a penalty on the resultant periodic subsignals in order to improve the sparsity of decomposition and avoid the overestimation of periods. This penalty is defined as the weighted sum of the l2 norms of the resultant periodic subsignals. This decomposition is approximated by an unconstrained minimization problem. In order to solve this problem, a relaxation algorithm is applied. In the experiments, decomposition results are presented to demonstrate the simultaneous detection of periods and waveforms hidden in signal mixtures.

  • An Architecture of Embedded Decompressor with Reconfigurability for Test Compression

    Hideyuki ICHIHARA  Tomoyuki SAIKI  Tomoo INOUE  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    713-719

    Test compression / decompression scheme for reducing the test application time and memory requirement of an LSI tester has been proposed. In the scheme, the employed coding algorithms are tailored to a given test data, so that the tailored coding algorithm can highly compress the test data. However, these methods have some drawbacks, e.g., the coding algorithm is ineffective in extra test data except for the given test data. In this paper, we introduce an embedded decompressor that is reconfigurable according to coding algorithms and given test data. Its reconfigurability can overcome the drawbacks of conventional decompressors with keeping high compression ratio. Moreover, we propose an architecture of reconfigurable decompressors for four variable-length codings. In the proposed architecture, the common functions for four codings are implemented as fixed (or non-reconfigurable) components so as to reduce the configuration data, which is stored on an ATE and sent to a CUT. Experimental results show that (1) the configuration data size becomes reasonably small by reducing the configuration part of the decompressor, (2) the reconfigurable decompressor is effective for SoC testing in respect of the test data size, and (3) it can achieve an optimal compression of test data by Huffman coding.

  • Robust Speech Recognition by Model Adaptation and Normalization Using Pre-Observed Noise

    Satoshi KOBASHIKAWA  Satoshi TAKAHASHI  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    422-429

    Users require speech recognition systems that offer rapid response and high accuracy concurrently. Speech recognition accuracy is degraded by additive noise, imposed by ambient noise, and convolutional noise, created by space transfer characteristics, especially in distant talking situations. Against each type of noise, existing model adaptation techniques achieve robustness by using HMM-composition and CMN (cepstral mean normalization). Since they need an additive noise sample as well as a user speech sample to generate the models required, they can not achieve rapid response, though it may be possible to catch just the additive noise in a previous step. In the previous step, the technique proposed herein uses just the additive noise to generate an adapted and normalized model against both types of noise. When the user's speech sample is captured, only online-CMN need be performed to start the recognition processing, so the technique offers rapid response. In addition, to cover the unpredictable S/N values possible in real applications, the technique creates several S/N HMMs. Simulations using artificial speech data show that the proposed technique increased the character correct rate by 11.62% compared to CMN.

  • Fault Simulation and Test Generation for Transistor Shorts Using Stuck-at Test Tools

    Yoshinobu HIGAMI  Kewal K. SALUJA  Hiroshi TAKAHASHI  Shin-ya KOBAYASHI  Yuzo TAKAMATSU  

     
    PAPER-Defect-Based Testing

      Vol:
    E91-D No:3
      Page(s):
    690-699

    This paper presents methods for detecting transistor short faults using logic level fault simulation and test generation. The paper considers two types of transistor level faults, namely strong shorts and weak shorts, which were introduced in our previous research. These faults are defined based on the values of outputs of faulty gates. The proposed fault simulation and test generation are performed using gate-level tools designed to deal with stuck-at faults, and no transistor-level tools are required. In the test generation process, a circuit is modified by inserting inverters, and a stuck-at test generator is used. The modification of a circuit does not mean a design-for-testability technique, as the modified circuit is used only during the test generation process. Further, generated test patterns are compacted by fault simulation. Also, since the weak short model involves uncertainty in its behavior, we define fault coverage and fault efficiency in three different way, namely, optimistic, pessimistic and probabilistic and assess them. Finally, experimental results for ISCAS benchmark circuits are used to demonstrate the effectiveness of the proposed methods.

7941-7960hit(16314hit)