The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

12521-12540hit(16314hit)

  • Heuristics to Minimize Multiple-Valued Decision Diagrams

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2498-2504

    In this paper, we propose a method to minimize multiple-valued decision diagrams (MDDs) for multiple-output functions. We consider the following: (1) a heuristic for encoding the 2-valued inputs; and (2) a heuristic for ordering the multiple-valued input variables based on sampling, where each sample is a group of outputs. We first generate a 4-valued input 2-valued multiple-output function from the given 2-valued input 2-valued functions. Then, we construct an MDD for each sample and find a good variable ordering. Finally, we generate a variable ordering from the orderings of MDDs representing the samples, and minimize the entire MDDs. Experimental results show that the proposed method is much faster, and for many benchmark functions, it produces MDDs with fewer nodes than sifting. Especially, the proposed method generates much smaller MDDs in a short time for benchmark functions when several 2-valued input variables are grouped to form multiple-valued variables.

  • Efficient Kernel Generation Based on Implicit Cube Set Representations and Its Applications

    Hiroshi SAWADA  Shigeru YAMASHITA  Akira NAGOYA  

     
    PAPER-Logic Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2513-2519

    This paper presents a new method that efficiently generates all of the kernels of a sum-of-products expression. Its main feature is the memorization of the kernel generation process by using a graph structure and implicit cube set representations. We also show its applications for common logic extraction. Our extraction method produces smaller circuits through several extensions than the extraction method based on two-cube divisors known as best ever.

  • CAM Processor Synthesis Based on Behavioral Descriptions

    Nozomu TOGAWA  Tatsuhiko WAKUI  Tatsuhiko YODEN  Makoto TERAJIMA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-Co-design and High-level Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2464-2473

    CAM (Content Addressable Memory) units are generally designed so that they can be applied to variety of application programs. However, if a particular application runs on CAM units, some functions in CAM units may be often used and other functions may never be used. We consider that appropriate design for CAM units is required depending on the requirements for a given application program. This paper proposes a CAM processor synthesis system based on behavioral descriptions. The input of the system is an application program written in C including CAM functions, and its output is hardware descriptions of a synthesized processor and a binary code executed on it. Since the system determines functions in CAM units and synthesizes a CAM processor depending on the requirements of an application program, we expect that a synthesized CAM processor can execute the application program with small processor area and delay. Experimental results demonstrate its efficiency and effectiveness.

  • Natural Gradient Learning for Spatio-Temporal Decorrelation: Recurrent Network

    Seungjin CHOI  Shunichi AMARI  Andrzej CICHOCKI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E83-A No:12
      Page(s):
    2715-2722

    Spatio-temporal decorrelation is the task of eliminating correlations between associated signals in spatial domain as well as in time domain. In this paper, we present a simple but efficient adaptive algorithm for spatio-temporal decorrelation. For the task of spatio-temporal decorrelation, we consider a dynamic recurrent network and calculate the associated natural gradient for the minimization of an appropriate optimization function. The natural gradient based spatio-temporal decorrelation algorithm is applied to the task of blind deconvolution of linear single input multiple output (SIMO) system and its performance is compared to the spatio-temporal anti-Hebbian learning rule.

  • Channel Hopping Scheme for Hybrid DS/FH Spread Spectrum

    Tai-Kuo WOO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E83-B No:12
      Page(s):
    2705-2708

    We analyze a scheme that provides frequency hopping pattern for DS/FH spread spectrum. The proposed scheme, based on the theory of finite projective planes, intends to make the number of transmitting terminals uniform across all channels and distribute the interference to all the participant terminals equally. Thus, when a terminal is in a state of power surge, the probability of having the worst case of interference for terminals sharing the same channel is reduced. In the performance evaluation, we demonstrate that the bit error rate is reduced by an order of magnitude through the use of the proposed hopping pattern for both internal and external interference.

  • A Basic Study of Cough Signal Detection for a Life-Support System

    Shoichi TAKEDA  Shuichi KATO  Koki TORIUMI  

     
    PAPER-Digital Signal Processing

      Vol:
    E83-A No:12
      Page(s):
    2640-2648

    Aged people who live alone are in particular need of a daily health check, medication, and of warm communication with family and friends. The authors have been developing a life-support computer system with such functions. Among them, a daily health check function with the capability of measuring blood pressure, detecting diseases from coughing, and so on would in particular be very powerful for primary care. As a first step to achieving quick services for a daily health check with a personal computer, utilization of cough information is considered. Features of cough data are analyzed aiming at developing an automatic cough data detection method. This paper proposes a novel method for extracting cough signals from other types of signals. The differential coefficient of a low-pass filtered waveform is first shown to be an effective parameter for discriminating between vowel and cough signals, and the relationship between cut-off frequency and cough detection rate is clarified. This parameter is then applied to cough signals mixed with vowel signals or white noises to evaluate robustness. The evaluation tests show that the cough feature can be perfectly detected for a 20 dB S/N ratio when the cut-off frequency is set to 24 [Hz]. The experimental results suggest that the proposed cough detection method can be a useful tool as a primary care for aged people with a bronchitis like an asthmatic bronchitis and a bronchopneumonia.

  • High Level Analysis of Clock Regions in a C++ System Description

    Luc RYNDERS  Patrick SCHAUMONT  Serge VERNALDE  Ivo BOLSENS  

     
    LETTER-High-level Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2631-2632

    Timing verification of digital synchronous designs is a complex process that is traditionally carried out deep in the design cycle, at the gate level. A method, embodied in a C++ based design system, is presented that allows modeling and verification of clock regions at a higher level. By combining event-driven, clock-cycle true and behavioral simulation, we are able to perform static and dynamic timing analysis of the clock regions.

  • Systematic Binary Deletion/Insertion Error Correcting Codes Capable of Correcting Random Bit Errors

    Kiattichai SAOWAPA  Haruhiko KANEKO  Eiji FUJIWARA  

     
    PAPER-Coding Theory

      Vol:
    E83-A No:12
      Page(s):
    2699-2705

    This paper presents a class of binary block codes capable of correcting single synchronization errors and single reversal errors with fewer check bits than the existing codes by 3 bits. This also shows a decoding circuit and analyzes its complexity.

  • Chinese Dialect Identification Based on Genetic Algorithm for Discriminative Training of Bigram Model

    Wuei-He TSAI  Wen-Whei CHANG  

     
    LETTER-Speech and Hearing

      Vol:
    E83-D No:12
      Page(s):
    2183-2185

    A minimum classification error formulation based on genetic algorithm is proposed for discriminative training of the bigram language model. Results of Chinese dialect identification were reported which demonstrate performance improvement with use of the genetic algorithm over the generalized probabilistic descent algorithm.

  • A Specification Style of Four-Phase Handshaking Asynchronous Controllers and the Optimization of Its Return-to-Zero Phase

    Rafael K. MORIZAWA  Takashi NANYA  

     
    PAPER-VLSI Design Methodology

      Vol:
    E83-A No:12
      Page(s):
    2446-2455

    A known problem of the four-phase handshaking protocol is that a return-to-zero phase of the signals involved in the handshake is necessary before starting another cycle, in which no useful work is usually done. In this paper we first define an easy-to-write specification style to specify four-phase handshaking asynchronous controllers that can be translated to an STG to obtain a gate-level implementation using existing synthesis methods. Then, we propose an algorithm that takes the specification written using our specification style and finds an optimized timing in which the idle-phase overhead of its gate-level implementation is reduced.

  • Implementation of SS No. 7 Functions in a Large-Capacity Switching Node with Distributed Configuration

    Etsuo MASUDA  Hideo SHIMBO  Katsuyuki KAWASE  Masanori HIRANO  

     
    PAPER-Switching

      Vol:
    E83-B No:12
      Page(s):
    2635-2647

    Methods for implementing SS7 functions are proposed for a large-capacity decentralized switching node; they satisfy the condition of hiding distributed configurations from adjacent nodes. First, line accommodation and acquisition methods are clarified for a large-capacity switching node in which multiple modules are used to realize trunk circuits and SS7 signaling links. Two methods are then proposed for allocating SS7 functions within the switching node. One distributes the functions over multiple circuit-switched modules (distributed allocation) while the other centralizes the functions in dedicated signaling modules (centralized allocation). We quantitatively evaluate both methods in terms of node scale versus the number of modules and signaling links required, the inter-module data transfer rate required, and the node traffic handling capacity when a particular module fails. From the evaluation results, we show that the distributed allocation should be employed for small-scale nodes and the centralized allocation for large-scale nodes. We also show the effectiveness of a method for avoiding a characteristic problem that arises when a particular module fails. Finally, we implement an experimental system as an example.

  • Convergence Property of Tri-Quantized-x NLMS Algorithm

    Kensaku FUJII  Yoshinori TANAKA  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:12
      Page(s):
    2739-2742

    The signed regressor algorithm, a variation of the least mean square (LMS) algorithm, is characterized by the estimation way of using the clipped reference signals, namely, its sign (). This clipping, equivalent to quantizing the reference signal to 1, only increases the estimation error by about 2 dB. This paper proposes to increase the number of the quantization steps to three, namely, 1 and 0, and shows that the 'tri-quantized-x' normalized least mean square (NLMS) algorithm with three quantization steps improves the convergence property.

  • EM Algorithm with Split and Merge Operations for Mixture Models

    Naonori UEDA  Ryohei NAKANO  

     
    INVITED PAPER-Biocybernetics, Neurocomputing

      Vol:
    E83-D No:12
      Page(s):
    2047-2055

    The maximum likelihood estimate of a mixture model is usually found by using the EM algorithm. However, the EM algorithm suffers from a local optima problem and therefore we cannot obtain the potential performance of mixture models in practice. In the case of mixture models, local maxima often have too many components of a mixture model in one part of the space and too few in another, widely separated part of the space. To escape from such configurations we proposed a new variant of the EM algorithm in which simultaneous split and merge operations are repeatedly performed by using a new criterion for efficiently selecting the split and merge candidates. We apply the proposed algorithm to the training of Gaussian mixtures and the dimensionality reduction based on a mixture of factor analyzers using synthetic and real data and show that the proposed algorithm can markedly improve the ML estimates.

  • New Efficient Designs of Discrete and Differentiating FIR Hilbert Transformers

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:12
      Page(s):
    2736-2738

    New designs of MAXFLAT discrete and differentiating Hilbert transformers are presented using their interrelationships with digital differentiators. The new designs have the explicit formulas for their tap-coefficients, which are further modified to obtain a new class of narrow transition band filters, with a performance comparable to the Chebyshev filters.

  • Efficient Representation and Compression of Multi-View Images

    Jong-Il PARK  Kyeong Ho YANG  Yuichi IWADATE  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:12
      Page(s):
    2186-2188

    This Letter proposes a new three dimensional (3D) visual communication approach based on the image-based rendering. We first compactly represent a reference view set by exploiting its geometric correlation and then efficiently compress the representation with appropriate coding schemes. Experimental results demonstrate that our proposed method significantly reduces the required bitrate.

  • Design, Modeling, and Control of a Novel Six D.O.F Positioning System Using Magnetic Levitation

    KwangSuk JUNG  YoonSu BAEK  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E83-C No:12
      Page(s):
    1937-1949

    The micro positioning systems using magnetic suspension technique, which is one of precision actuating method, have been suggested. Utilizing the various potentials such as the exclusion of a mechanical friction, they are being applied broadly to multi degrees of freedom (d.o.f) system requesting high accuracy or hybrid system requesting to be controlled position and force simultaneously. This paper presents the entire development procedure of a novel six d.o.f micro positioning system using mag-netic levitation, with a repulsive force mechanism covering the all d.o.f. First, the interactions between magnetic elements are modeled and the system design flow by an optimal location of the elements is given. A kinematic relationship between the measuring instruments and the levitated object is derived, and dynamic characteristics are identified by the narrow gap principles. And the main issues for control are discussed.

  • Multicriteria Codesign Optimization for Embedded Multimedia Communication System

    I-Horng JENG  Feipei LAI  

     
    PAPER-Co-design and High-level Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2474-2487

    In the beginning of the new century, many information appliance (IA) products will replace traditional electronic appliances to help people in smart, efficient, and low-cost ways. These successful products must be capable of communicating multimedia information, which is embedded into the electronic appliances with high integration, innovation, and power-throughput tradeoff. In this paper, we develop a codesign procedure to analyze, compare, and emulate the multimedia communication applications to find the candidate implementations under different criteria. The experimental results demonstrate that in general, memory technology dominates the optimal tradeoff and ALU improvements impact greatly on particular applications. The results also show that the proposed procedure is effective and quite efficient.

  • Architecture and Performance Evaluation of a New Functional Memory: Functional Memory for Addition

    Kazutoshi KOBAYASHI  Masanao YAMAOKA  Yukifumi KOBAYASHI  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER-VLSI Architecture

      Vol:
    E83-A No:12
      Page(s):
    2400-2408

    We propose a functional memory for addition (FMA), which is a memory-merged logic LSI. It is a memory as well as a SIMD parallel processor. To minimize the area, a precessing element (PE) consists of several DRAM words and a bit-serial ALU. The ALU has a functionality of addition bit by bit. This paper describes two FMA experimental LSIs. One is for general purpose, and the other is for full search block matching of image compression. We estimate that a 0.18 µm process realizes 57,000 PEs in a 50 mm2 die, achieving 205 GOPS under 1.36 W power.

  • A Practical Method for System-Level Bus Architecture Validation

    Kazuyoshi TAKEMURA  Masanobu MIZUNO  Akira MOTOHARA  

     
    PAPER-VLSI Design Methodology

      Vol:
    E83-A No:12
      Page(s):
    2439-2445

    This paper presents a system-level bus architecture validation technique and shows its application to a consumer product design. This technique enables the entire system to be validated with bus cycle accuracy using bus architecture level models derived from their corresponding behavioral level models. Experimental results from a digital still camera (DSC) system design show that our approach offers much faster simulation speed than register transfer level (RTL) simulators. Using this fast and accurate validation technique, bus architecture designs, validations and optimizations can be effectively carried out at system-level and total turn around time of system designs can be reduced dramatically.

  • Bistatic Radar Moving Returns from Sea Surface

    Ali KHENCHAF  Olivier AIRIAU  

     
    PAPER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1827-1835

    A program is developed to simulate the signal received by a bistatic pulse radar for a defined scenario. The signal collected at the receiving antenna is calculated as a function of time by taking into account the vectorial aspect of the electromagnetic waves and various elements operating in the radar radiolink. The radar radiolink is designed in a modular structure for a general configuration where the transmitter, the target and the receiver are moving. Modules such as elements characterizing the antennas radiation or defining the target scattering can be inserted in accordance with the desired radar scenario. Then the developed model permits to simulate a wide range of radar scenarios where returns from targets and clutter can be individually processed and their characteristics can be investigated in time or frequency. The interest of this model is great because it permits, for a defined scenario, to generate radar data which can be used in signal processing algorithms for target detection, clutter suppression or target classification. This paper shows the implementation of the simulation program considering a concrete radar scenario. The presented scenario deals with the simulation of the sea clutter occurring in a bistatic radar radiolink over the sea surface. In this application where the sea surface is considered as the target, the electric field scattered from the sea surface is calculated by assuming that the surface is described by two independent scales of roughness.

12521-12540hit(16314hit)