The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SIS(3079hit)

1-20hit(3079hit)

  • Loss Function for Deep Learning to Model Dynamical Systems Open Access

    Takahito YOSHIDA  Takaharu YAGUCHI  Takashi MATSUBARA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/07/22
      Vol:
    E107-D No:11
      Page(s):
    1458-1462

    Accurately simulating physical systems is essential in various fields. In recent years, deep learning has been used to automatically build models of such systems by learning from data. One such method is the neural ordinary differential equation (neural ODE), which treats the output of a neural network as the time derivative of the system states. However, while this and related methods have shown promise, their training strategies still require further development. Inspired by error analysis techniques in numerical analysis while replacing numerical errors with modeling errors, we propose the error-analytic strategy to address this issue. Therefore, our strategy can capture long-term errors and thus improve the accuracy of long-term predictions.

  • Development of Microwave-Based Renal Denervation Catheter for Clinical Application Open Access

    Shohei MATSUHARA  Kazuyuki SAITO  Tomoyuki TAJIMA  Aditya RAKHMADI  Yoshiki WATANABE  Nobuyoshi TAKESHITA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2024/05/20
      Vol:
    E107-C No:11
      Page(s):
    506-516

    Renal Denervation (RDN) has been developed as a potential treatment for hypertension that is resistant to traditional antihypertensive medication. This technique involves the ablation of nerve fibers around the renal artery from inside the blood vessel, which is intended to suppress sympathetic nerve activity and result in an antihypertensive effect. Currently, clinical investigation is underway to evaluate the effectiveness of RDN in treating treatment-resistant hypertension. Although radio frequency (RF) ablation catheters are commonly used, their heating capacity is limited. Microwave catheters are being considered as another option for RDN. We aim to solve the technical challenges of applying microwave catheters to RDN. In this paper, we designed a catheter with a helix structure and a microwave (2.45 GHz) antenna. The antenna is a coaxial slot antenna, the dimensions of which were determined by optimizing the reflection coefficient through simulation. The measured catheter reflection coefficient is -23.6 dB using egg white and -32 dB in the renal artery. The prototype catheter was evaluated by in vitro experiments to validate the simulation. The procedure performed successfully with in vivo experiments involving the ablation of porcine renal arteries. The pathological evaluation confirmed that a large area of the perivascular tissue was ablated (> 5 mm) in a single quadrant without significant damage to the renal artery. Our proposed device allows for control of the ablation position and produces deep nerve ablation without overheating the intima or surrounding blood, suggesting a highly capable new denervation catheter.

  • Transient Analysis of Electromagnetic Scattering from Large-Scale Objects Using Physical Optics with Fast Inverse Laplace Transform Open Access

    Seiya KISHIMOTO  Ryoya OGINO  Kenta ARASE  Shinichiro OHNUKI  

     
    BRIEF PAPER

      Pubricized:
    2024/02/29
      Vol:
    E107-C No:11
      Page(s):
    486-489

    This paper introduces a computational approach for transient analysis of extensive scattering problems. This novel method is based on the combination of physical optics (PO) and the fast inverse Laplace transform (FILT). PO is a technique for analyzing electromagnetic scattering from large-scale objects. We modify PO for application in the complex frequency domain, where the scattered fields are evaluated. The complex frequency function is efficiently transformed into the time domain using FILT. The effectiveness of this combination is demonstrated through large-scale analysis and transient response for a short pulse incidence. The accuracy is investigated and validated by comparison with reference solutions.

  • Spatial Anomaly Detection Using Fast xFlow Proxy for Nation-Wide IP Network Open Access

    Shohei KAMAMURA  Yuhei HAYASHI  Takayuki FUJIWARA  

     
    PAPER-Internet

      Vol:
    E107-B No:11
      Page(s):
    728-738

    This paper proposes an anomaly-detection method using the Fast xFlow Proxy, which enables fine-grained measurement of communication traffic. When a fault occurs in services or networks, communication traffic changes from its normal behavior. Therefore, anomalies can be detected by analyzing their autocorrelations. However, in large-scale carrier networks, packets are generally encapsulated and observed as aggregate values, making it difficult to detect minute changes in individual communication flows. Therefore, we developed the Fast xFlow Proxy, which analyzes encapsulated packets in real time and enables flows to be measured at an arbitrary granularity. In this paper, we propose an algorithm that utilizes the Fast xFlow Proxy to detect not only the anomaly occurrence but also its cause, that is, the location of the fault at the end-to-end. The idea is not only to analyze the autocorrelation of a specific flow but also to apply spatial analysis to estimate the fault location by comparing the behavior of multiple flows. Through extensive simulations, we demonstrate that base station, network, and service faults can be detected without any false negative detections.

  • Comprehensive Design Approach to Switch-Mode Resonant Power Amplifiers Exploiting Geodesic-to-Geodesic Impedance Conversion Open Access

    Minoru MIZUTANI  Takashi OHIRA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    307-314

    This paper presents a comprehensive design approach to load-independent radio frequency (RF) power amplifiers. We project the zero-voltage-switching (ZVS) and zero-voltage-derivative-switching (ZVDS) load impedances onto a Smith chart, and find that their loci exhibit geodesic arcs. We exploit a two-port reactive network to convert the geodesic locus into another geodesic. This is named geodesic-to-geodesic (G2G) impedance conversion, and the power amplifier that employs G2G conversion is called class-G2G amplifier. We comprehensively explore the possible circuit topologies, and find that there are twenty G2G networks to create class-G2G amplifiers. We also find out that the class-G2G amplifier behaves like a transformer or a gyrator converting from dc to RF. The G2G design theory is verified via a circuit simulation. We also verified the theory through an experiment employing a prototype 100 W amplifier at 6.78 MHz. We conclude that the presented design approach is quite comprehensive and useful for the future development of high-efficiency RF power amplifiers.

  • Permissionless Blockchain-Based Sybil-Resistant Self-Sovereign Identity Utilizing Attested Execution Secure Processors Open Access

    Koichi MORIYAMA  Akira OTSUKA  

     
    INVITED PAPER

      Pubricized:
    2024/04/15
      Vol:
    E107-D No:9
      Page(s):
    1112-1122

    This article describes the idea of utilizing Attested Execution Secure Processors (AESPs) that fit into building a secure Self-Sovereign Identity (SSI) system satisfying Sybil-resistance under permissionless blockchains. Today’s circumstances requiring people to be more online have encouraged us to address digital identity preserving privacy. There is a momentum of research addressing SSI, and many researchers approach blockchain technology as a foundation. SSI brings natural persons various benefits such as owning controls; on the other side, digital identity systems in the real world require Sybil-resistance to comply with Anti-Money-Laundering (AML) and other needs. The main idea in our proposal is to utilize AESPs for three reasons: first is the use of attested execution capability along with tamper-resistance, which is a strong assumption; second is powerfulness and flexibility, allowing various open-source programs to be executed within a secure enclave, and the third is that equipping hardware-assisted security in mobile devices has become a norm. Rafael Pass et al.’s formal abstraction of AESPs and the ideal functionality $\color{brown}{\mathcal{G}_\mathtt{att}}$ enable us to formulate how hardware-assisted security works for secure digital identity systems preserving privacy under permissionless blockchains mathematically. Our proposal of the AESP-based SSI architecture and system protocols, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$, demonstrates the advantages of building a proper SSI system that satisfies the Sybil-resistant requirement. The protocols may eliminate the online distributed committee assumed in other research, such as CanDID, because of assuming AESPs; thus, $\color{blue}{\Pi^{\mathcal{G}_\mathtt{att}}}$ allows not to rely on multi-party computation (MPC), bringing drastic flexibility and efficiency compared with the existing SSI systems.

  • Joint 2D and 3D Semantic Segmentation with Consistent Instance Semantic Open Access

    Yingcai WAN  Lijin FANG  

     
    PAPER-Image

      Pubricized:
    2023/12/15
      Vol:
    E107-A No:8
      Page(s):
    1309-1318

    2D and 3D semantic segmentation play important roles in robotic scene understanding. However, current 3D semantic segmentation heavily relies on 3D point clouds, which are susceptible to factors such as point cloud noise, sparsity, estimation and reconstruction errors, and data imbalance. In this paper, a novel approach is proposed to enhance 3D semantic segmentation by incorporating 2D semantic segmentation from RGB-D sequences. Firstly, the RGB-D pairs are consistently segmented into 2D semantic maps using the tracking pipeline of Simultaneous Localization and Mapping (SLAM). This process effectively propagates object labels from full scans to corresponding labels in partial views with high probability. Subsequently, a novel Semantic Projection (SP) block is introduced, which integrates features extracted from localized 2D fragments across different camera viewpoints into their corresponding 3D semantic features. Lastly, the 3D semantic segmentation network utilizes a combination of 2D-3D fusion features to facilitate a merged semantic segmentation process for both 2D and 3D. Extensive experiments conducted on public datasets demonstrate the effective performance of the proposed 2D-assisted 3D semantic segmentation method.

  • CyCSNet: Learning Cycle-Consistency of Semantics for Weakly-Supervised Semantic Segmentation Open Access

    Zhikui DUAN  Xinmei YU  Yi DING  

     
    PAPER-Computer Graphics

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1328-1337

    Existing weakly-supervised segmentation approaches based on image-level annotations may focus on the most activated region in the image and tend to identify only part of the target object. Intuitively, high-level semantics among objects of the same category in different images could help to recognize corresponding activated regions of the query. In this study, a scheme called Cycle-Consistency of Semantics Network (CyCSNet) is proposed, which can enhance the activation of the potential inactive regions of the target object by utilizing the cycle-consistent semantics from images of the same category in the training set. Moreover, a Dynamic Correlation Feature Selection (DCFS) algorithm is derived to reduce the noise from pixel-wise samples of low relevance for better training. Experiments on the PASCAL VOC 2012 dataset show that the proposed CyCSNet achieves competitive results compared with state-of-the-art weakly-supervised segmentation approaches.

  • Investigating and Enhancing the Neural Distinguisher for Differential Cryptanalysis Open Access

    Gao WANG  Gaoli WANG  Siwei SUN  

     
    PAPER-Information Network

      Pubricized:
    2024/04/12
      Vol:
    E107-D No:8
      Page(s):
    1016-1028

    At Crypto 2019, Gohr first adopted the neural distinguisher for differential cryptanalysis, and since then, this work received increasing attention. However, most of the existing work focuses on improving and applying the neural distinguisher, the studies delving into the intrinsic principles of neural distinguishers are finite. At Eurocrypt 2021, Benamira et al. conducted a study on Gohr’s neural distinguisher. But for the neural distinguishers proposed later, such as the r-round neural distinguishers trained with k ciphertext pairs or ciphertext differences, denoted as NDcpk_r (Gohr’s neural distinguisher is the special NDcpk_r with K = 1) and NDcdk_r , such research is lacking. In this work, we devote ourselves to study the intrinsic principles and relationship between NDcdk_r and NDcpk_r. Firstly, we explore the working principle of NDcd1_r through a series of experiments and find that it strongly relies on the probability distribution of ciphertext differences. Its operational mechanism bears a strong resemblance to that of NDcp1_r given by Benamira et al.. Therefore, we further compare them from the perspective of differential cryptanalysis and sample features, demonstrating the superior performance of NDcp1_r can be attributed to the relationships between certain ciphertext bits, especially the significant bits. We then extend our investigation to NDcpk_r, and show that its ability to recognize samples heavily relies on the average differential probability of k ciphertext pairs and some relationships in the ciphertext itself, but the reliance between k ciphertext pairs is very weak. Finally, in light of the findings of our research, we introduce a strategy to enhance the accuracy of the neural distinguisher by using a fixed difference to generate the negative samples instead of the random one. Through the implementation of this approach, we manage to improve the accuracy of the neural distinguishers by approximately 2% to 8% for 7-round Speck32/64 and 9-round Simon32/64.

  • Machine Learning-Based System for Heat-Resistant Analysis of Car Lamp Design Open Access

    Hyebong CHOI  Joel SHIN  Jeongho KIM  Samuel YOON  Hyeonmin PARK  Hyejin CHO  Jiyoung JUNG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/03
      Vol:
    E107-D No:8
      Page(s):
    1050-1058

    The design of automobile lamps requires accurate estimation of heat distribution to prevent overheating and deformation of the product. Traditional heat resistant analysis using Computational Fluid Dynamics (CFD) is time-consuming and requires expertise in thermofluid mechanics, making real-time temperature analysis less accessible to lamp designers. We propose a machine learning-based temperature prediction system for automobile lamp design. We trained our machine learning models using CFD results of various lamp designs, providing lamp designers real-time Heat-Resistant Analysis. Comprehensive tests on real lamp products demonstrate that our prediction model accurately estimates heat distribution comparable to CFD analysis within a minute. Our system visualizes the estimated heat distribution of car lamp design supporting quick decision-making by lamp designer. It is expected to shorten the product design process, improving the market competitiveness.

  • Modeling and Analysis of Electromechanical Automatic Leveling Mechanism for High-Mobility Vehicle-Mounted Theodolites Open Access

    Xiangyu LI  Ping RUAN  Wei HAO  Meilin XIE  Tao LV  

     
    PAPER-Measurement Technology

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1027-1039

    To achieve precise measurement without landing, the high-mobility vehicle-mounted theodolite needs to be leveled quickly with high precision and ensure sufficient support stability before work. After the measurement, it is also necessary to ensure that the high-mobility vehicle-mounted theodolite can be quickly withdrawn. Therefore, this paper proposes a hierarchical automatic leveling strategy and establishes a two-stage electromechanical automatic leveling mechanism model. Using coarse leveling of the first-stage automatic leveling mechanism and fine leveling of the second-stage automatic leveling mechanism, the model realizes high-precision and fast leveling of the vehicle-mounted theodolites. Then, the leveling control method based on repeated positioning is proposed for the first-stage automatic leveling mechanism. To realize the rapid withdrawal for high-mobility vehicle-mounted theodolites, the method ensures the coincidence of spatial movement paths when the structural parts are unfolded and withdrawn. Next, the leg static balance equation is constructed in the leveling state, and the support force detection method is discussed in realizing the stable support for vehicle-mounted theodolites. Furthermore, a mathematical model for “false leg” detection is established furtherly, and a “false leg” detection scheme based on the support force detection method is analyzed to significantly improve the support stability of vehicle-mounted theodolites. Finally, an experimental platform is constructed to perform the performance test for automatic leveling mechanisms. The experimental results show that the leveling accuracy of established two-stage electromechanical automatic leveling mechanism can reach 3.6″, and the leveling time is no more than 2 mins. The maximum support force error of the support force detection method is less than 15%, and the average support force error is less than 10%. In contrast, the maximum support force error of the drive motor torque detection method reaches 80.12%, and its leg support stability is much less than the support force detection method. The model and analysis method proposed in this paper can also be used for vehicle-mounted radar, vehicle-mounted laser measurement devices, vehicle-mounted artillery launchers and other types of vehicle-mounted equipment with high-precision and high-mobility working requirements.

  • Determination Method of Cascaded Number for Lumped Parameter Models Oriented to Transmission Lines Open Access

    Risheng QIN  Hua KUANG  He JIANG  Hui YU  Hong LI  Zhuan LI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/12/20
      Vol:
    E107-C No:7
      Page(s):
    201-209

    This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Γ-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Γ-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.

  • Power Peak Load Forecasting Based on Deep Time Series Analysis Method Open Access

    Ying-Chang HUNG  Duen-Ren LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/03/21
      Vol:
    E107-D No:7
      Page(s):
    845-856

    The prediction of peak power load is a critical factor directly impacting the stability of power supply, characterized significantly by its time series nature and intricate ties to the seasonal patterns in electricity usage. Despite its crucial importance, the current landscape of power peak load forecasting remains a multifaceted challenge in the field. This study aims to contribute to this domain by proposing a method that leverages a combination of three primary models - the GRU model, self-attention mechanism, and Transformer mechanism - to forecast peak power load. To contextualize this research within the ongoing discourse, it’s essential to consider the evolving methodologies and advancements in power peak load forecasting. By delving into additional references addressing the complexities and current state of the power peak load forecasting problem, this study aims to build upon the existing knowledge base and offer insights into contemporary challenges and strategies adopted within the field. Data preprocessing in this study involves comprehensive cleaning, standardization, and the design of relevant functions to ensure robustness in the predictive modeling process. Additionally, recognizing the necessity to capture temporal changes effectively, this research incorporates features such as “Weekly Moving Average” and “Monthly Moving Average” into the dataset. To evaluate the proposed methodologies comprehensively, this study conducts comparative analyses with established models such as LSTM, Self-attention network, Transformer, ARIMA, and SVR. The outcomes reveal that the models proposed in this study exhibit superior predictive performance compared to these established models, showcasing their effectiveness in accurately forecasting electricity consumption. The significance of this research lies in two primary contributions. Firstly, it introduces an innovative prediction method combining the GRU model, self-attention mechanism, and Transformer mechanism, aligning with the contemporary evolution of predictive modeling techniques in the field. Secondly, it introduces and emphasizes the utility of “Weekly Moving Average” and “Monthly Moving Average” methodologies, crucial in effectively capturing and interpreting seasonal variations within the dataset. By incorporating these features, this study enhances the model’s ability to account for seasonal influencing factors, thereby significantly improving the accuracy of peak power load forecasting. This contribution aligns with the ongoing efforts to refine forecasting methodologies and addresses the pertinent challenges within power peak load forecasting.

  • Conflict Management Method Based on a New Belief Divergence in Evidence Theory Open Access

    Zhu YIN  Xiaojian MA  Hang WANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2024/03/01
      Vol:
    E107-D No:7
      Page(s):
    857-868

    Highly conflicting evidence that may lead to the counter-intuitive results is one of the challenges for information fusion in Dempster-Shafer evidence theory. To deal with this issue, evidence conflict is investigated based on belief divergence measuring the discrepancy between evidence. In this paper, the pignistic probability transform belief χ2 divergence, named as BBχ2 divergence, is proposed. By introducing the pignistic probability transform, the proposed BBχ2 divergence can accurately quantify the difference between evidence with the consideration of multi-element sets. Compared with a few belief divergences, the novel divergence has more precision. Based on this advantageous divergence, a new multi-source information fusion method is devised. The proposed method considers both credibility weights and information volume weights to determine the overall weight of each evidence. Eventually, the proposed method is applied in target recognition and fault diagnosis, in which comparative analysis indicates that the proposed method can realize the highest accuracy for managing evidence conflict.

  • Operational Resilience of Network Considering Common-Cause Failures Open Access

    Tetsushi YUGE  Yasumasa SAGAWA  Natsumi TAKAHASHI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    855-863

    This paper discusses the resilience of networks based on graph theory and stochastic process. The electric power network where edges may fail simultaneously and the performance of the network is measured by the ratio of connected nodes is supposed for the target network. For the restoration, under the constraint that the resources are limited, the failed edges are repaired one by one, and the order of the repair for several failed edges is determined with the priority to the edge that the amount of increasing system performance is the largest after the completion of repair. Two types of resilience are discussed, one is resilience in the recovery stage according to the conventional definition of resilience and the other is steady state operational resilience considering the long-term operation in which the network state changes stochastically. The second represents a comprehensive capacity of resilience for a system and is analytically derived by Markov analysis. We assume that the large-scale disruption occurs due to the simultaneous failure of edges caused by the common cause failures in the analysis. Marshall-Olkin type shock model and α factor method are incorporated to model the common cause failures. Then two resilience measures, “operational resilience” and “operational resilience in recovery stage” are proposed. We also propose approximation methods to obtain these two operational resilience measures for complex networks.

  • A 0.13 mJ/Prediction CIFAR-100 Fully Synthesizable Raster-Scan-Based Wired-Logic Processor in 16-nm FPGA Open Access

    Dongzhu LI  Zhijie ZHAN  Rei SUMIKAWA  Mototsugu HAMADA  Atsutake KOSUGE  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-C No:6
      Page(s):
    155-162

    A 0.13mJ/prediction with 68.6% accuracy wired-logic deep neural network (DNN) processor is developed in a single 16-nm field-programmable gate array (FPGA) chip. Compared with conventional von-Neumann architecture DNN processors, the energy efficiency is greatly improved by eliminating DRAM/BRAM access. A technical challenge for conventional wired-logic processors is the large amount of hardware resources required for implementing large-scale neural networks. To implement a large-scale convolutional neural network (CNN) into a single FPGA chip, two technologies are introduced: (1) a sparse neural network known as a non-linear neural network (NNN), and (2) a newly developed raster-scan wired-logic architecture. Furthermore, a novel high-level synthesis (HLS) technique for wired-logic processor is proposed. The proposed HLS technique enables the automatic generation of two key components: (1) Verilog-hardware description language (HDL) code for a raster-scan-based wired-logic processor and (2) test bench code for conducting equivalence checking. The automated process significantly mitigates the time and effort required for implementation and debugging. Compared with the state-of-the-art FPGA-based processor, 238 times better energy efficiency is achieved with only a slight decrease in accuracy on the CIFAR-100 task. In addition, 7 times better energy efficiency is achieved compared with the state-of-the-art network-optimized application-specific integrated circuit (ASIC).

  • Development of Tunnel Magneto-Resistive Sensors Open Access

    Mikihiko OOGANE  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    171-175

    The magnetic field resolution of the tunnel magneto-resistive (TMR) sensors has been improving and it reaches below 1.0 pT/Hz0.5 at low frequency. The real-time measurement of the magnetocardiography (MCG) and the measurement of the magnetoencephalography (MEG) have been demonstrated by developed TMR sensors. Although the MCG and MEG have been applied to diagnosis of diseases, the conventional MCG/MEG system using superconducting quantum interference devices (SQUIDs) cannot measure the signal by touching the body, the body must be fixed, and maintenance costs are huge. The MCG/MEG system with TMR sensors operating at room temperature have the potential to solve these problems. In addition, it has the great advantage that it does not require a special magnetic shielded room. Further developments are expected to progress to maximize these unique features of TMR sensors.

  • Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles Open Access

    Takako MIZOGUCHI  Akihiko KANDORI  Keiji ENPUKU  

     
    PAPER

      Pubricized:
    2023/11/21
      Vol:
    E107-C No:6
      Page(s):
    183-189

    Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.

  • Dataset of Functionally Equivalent Java Methods and Its Application to Evaluating Clone Detection Tools Open Access

    Yoshiki HIGO  

     
    PAPER-Software System

      Pubricized:
    2024/02/21
      Vol:
    E107-D No:6
      Page(s):
    751-760

    Modern high-level programming languages have a wide variety of grammar and can implement the required functionality in different ways. The authors believe that a large amount of code that implements the same functionality in different ways exists even in open source software where the source code is publicly available, and that by collecting such code, a useful data set can be constructed for various studies in software engineering. In this study, we construct a dataset of pairs of Java methods that have the same functionality but different structures from approximately 314 million lines of source code. To construct this dataset, the authors used an automated test generation technique, EvoSuite. Test cases generated by automated test generation techniques have the property that the test cases always succeed. In constructing the dataset, using this property, test cases generated from two methods were executed against each other to automatically determine whether the behavior of the two methods is the same to some extent. Pairs of methods for which all test cases succeeded in cross-running test cases are manually investigated to be functionally equivalent. This paper also reports the results of an accuracy evaluation of code clone detection tools using the constructed dataset. The purpose of this evaluation is assessing how accurately code clone detection tools could find the functionally equivalent methods, not assessing the accuracy of detecting ordinary clones. The constructed dataset is available at github (https://github.com/YoshikiHigo/FEMPDataset).

  • 150 GHz Fundamental Oscillator Utilizing Transmission-Line-Based Inter-Stage Matching in 130 nm SiGe BiCMOS Technology Open Access

    Sota KANO  Tetsuya IIZUKA  

     
    LETTER

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:5
      Page(s):
    741-745

    A 150 GHz fundamental oscillator employing an inter-stage matching network based on a transmission line is presented in this letter. The proposed oscillator consists of a two-stage common-emitter amplifier loop, whose inter-stage connections are optimized to meet the oscillation condition. The oscillator is designed in a 130-nm SiGe BiCMOS process that offers fT and fMAX of 350 GHz and 450 GHz. According to simulation results, an output power of 3.17 dBm is achieved at 147.6 GHz with phase noise of -115 dBc/Hz at 10 MHz offset and figure-of-merit (FoM) of -180 dBc/Hz.

1-20hit(3079hit)