The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPECT(1024hit)

141-160hit(1024hit)

  • Low Cost Wearable Sensor for Human Emotion Recognition Using Skin Conductance Response

    Khairun Nisa' MINHAD  Jonathan Shi Khai OOI  Sawal Hamid MD ALI  Mamun IBNE REAZ  Siti Anom AHMAD  

     
    PAPER-Biological Engineering

      Pubricized:
    2017/08/23
      Vol:
    E100-D No:12
      Page(s):
    3010-3017

    Malaysia is one of the countries with the highest car crash fatality rates in Asia. The high implementation cost of in-vehicle driver behavior warning system and autonomous driving remains a significant challenge. Motivated by the large number of simple yet effective inventions that benefitted many developing countries, this study presents the findings of emotion recognition based on skin conductance response using a low-cost wearable sensor. Emotions were evoked by presenting the proposed display stimulus and driving stimulator. Meaningful power spectral density was extracted from the filtered signal. Experimental protocols and frameworks were established to reduce the complexity of the emotion elicitation process. The proof of concept in this work demonstrated the high accuracy of two-class and multiclass emotion classification results. Significant differences of features were identified using statistical analysis. This work is one of the most easy-to-use protocols and frameworks, but has high potential to be used as biomarker in intelligent automobile, which helps prevent accidents and saves lives through its simplicity.

  • A 100-MHz 51.2-Gb/s Packet Lookup Engine with Automatic Table Update Function

    Kousuke IMAMURA  Ryota HONDA  Yoshifumi KAWAMURA  Naoki MIURA  Masami URANO  Satoshi SHIGEMATSU  Tetsuya MATSUMURA  Yoshio MATSUDA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:10
      Page(s):
    2123-2134

    The development of an extremely efficient packet inspection algorithm for lookup engines is important in order to realize high throughput and to lower energy dissipation. In this paper, we propose a new lookup engine based on a combination of a mismatch detection circuit and a linked-list hash table. The engine has an automatic rule registration and deletion function; the results are that it is only necessary to input rules, and the various tables included in the circuits, such as the Mismatch Table, Index Table, and Rule Table, will be automatically configured using the embedded hardware. This function utilizes a match/mismatch assessment for normal packet inspection operations. An experimental chip was fabricated using 40-nm 8-metal CMOS process technology. The chip operates at a frequency of 100MHz under a power supply voltage of VDD =1.1V. A throughput of 100Mpacket/s (=51.2Gb/s) is obtained at an operating frequency of 100MHz, which is three times greater than the throughput of 33Mpacket/s obtained with a conventional lookup engine without a mismatch detection circuit. The measured energy dissipation was a 1.58pJ/b·Search.

  • A Spectrum Sharing Method Based on Users' Behavior and Providers' Profit

    Kazuhiko KINOSHITA  Yukika MARUYAMA  Keita KAWANO  Takashi WATANABE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1928-1938

    In recent years, spectrum sharing has received much attention as a technique for more efficient spectrum use. In the case in which all providers are cooperative, spectrum sensing can easily be realized and can improve user throughput (on average). If that is not the case, providers are not cooperative, i.e., spectrum trading, spectrum bands are rented to promote spectrum sharing. To ensure more profit, however, non-cooperative providers must correctly estimate the fluctuation of the number of connected users to be able to determine the offered channel price. In this paper, we propose a spectrum sharing method to achieve both higher throughput and provider profit via appropriate pricing using a disaggregate behavioral model. Finally, we confirm the effectiveness of the proposed method using simulation experiments.

  • Smart Spectrum for Future Wireless World Open Access

    Takeo FUJII  Kenta UMEBAYASHI  

     
    INVITED PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1661-1673

    As the role of wireless communication is becoming more important for realizing a future connected society for not only humans but also things, spectrum scarcity is becoming severe, because of the huge numbers of mobile terminals and many types of applications in use. In order to realize sustainable wireless connection under limited spectrum resources in a future wireless world, a new dynamic spectrum management scheme should be developed that considers the surrounding radio environment and user preferences. In this paper, we discuss a new spectrum utilization framework for a future wireless world called the “smart spectrum.” There are four main issues related to realizing the smart spectrum. First, in order to recognize the spectrum environment accurately, spectrum measurement is an important technology. Second, spectrum modeling for estimating the spectrum usage and the spectrum environment by using measurement results is required for designing wireless parameters for dynamic spectrum use in a shared spectrum environment. Third, in order to effectively gather the measurement results and provide the spectrum information to users, a measurement-based spectrum database can be used. Finally, smart spectrum management that operates in combination with a spectrum database is required for realizing efficient and organized dynamic spectrum utilization. In this paper, we discuss the concept of the smart spectrum, fundamental research studies of the smart spectrum, and the direction of development of the smart spectrum for targeting the future wireless world.

  • Spectral Distribution of Wigner Matrices in Finite Dimensions and Its Application to LPI Performance Evaluation of Radar Waveforms

    Jun CHEN  Fei WANG  Jianjiang ZHOU  Chenguang SHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    2021-2025

    Recent research on the assessment of low probability of interception (LPI) radar waveforms is mainly based on limiting spectral properties of Wigner matrices. As the dimension of actual operating data is constrained by the sampling frequency, it is very urgent and necessary to research the finite theory of Wigner matrices. This paper derives a closed-form expression of the spectral cumulative distribution function (CDF) for Wigner matrices of finite sizes. The expression does not involve any derivatives and integrals, and therefore can be easily computed. Then we apply it to quantifying the LPI performance of radar waveforms, and the Kullback-Leibler divergence (KLD) is also used in the process of quantification. Simulation results show that the proposed LPI metric which considers the finite sample size and signal-to-noise ratio is more effective and practical.

  • Parameterized L1-Minimization Algorithm for Off-the-Gird Spectral Compressive Sensing

    Wei ZHANG  Feng YU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    2026-2030

    Spectral compressive sensing is a novel approach that enables extraction of spectral information from a spectral-sparse signal, exclusively from its compressed measurements. Thus, the approach has received considerable attention from various fields. However, standard compressive sensing algorithms always require a sparse signal to be on the grid, whose spacing is the standard resolution limit. Thus, these algorithms severely degenerate while handling spectral compressive sensing, owing to the off-the-grid issue. Some off-the-grid algorithms were recently proposed to solve this problem, but they are either inaccurate or computationally expensive. In this paper, we propose a novel algorithm named parameterized ℓ1-minimization (PL1), which can efficiently solves the off-the-grid spectral estimation problem with relatively low computational complexity.

  • Establishment of EMC Research in Japan and its Future Prospects Open Access

    Osamu FUJIWARA  

     
    INVITED SURVEY PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/03/27
      Vol:
    E100-B No:9
      Page(s):
    1623-1632

    Systematic research on electromagnetic compatibility (EMC) in Japan started in 1977 by the establishment of a technical committee on “environmental electromagnetic engineering” named EMCJ, which was founded both in the Institute of Electronics and Communication Engineers or the present IEICE (Institute of Electronics, Information and Communication Engineers) and in the Institute of Electrical Engineers of Japan or the IEEJ. The research activities have been continued as the basic field of interdisciplinary study to harmonize even in the electromagnetic (EM) environment where radio waves provide intolerable EM disturbances to electronic equipment and to that environment itself. The subjects and their outcomes which the EMCJ has dealt with during about 40 years from the EMCJ establishment include the evaluation of EM environment, EMC of electric and electronic equipment, and EMC of biological effects involving bioelectromagnetics and so on. In this paper, the establishment history and structure of the EMCJ are reviewed along with the change in activities, and topics of the technical reports presented at EMCJ meetings from 2006 to 2016 are surveyed. In addition, internationalization and its related campaign are presented in conjunction with the EMCJ research activities, and the status quo of the EMCJ under the IEICE is also discussed along with the prospects.

  • Computationally Efficient Reflectance Estimation for Hyperspectral Images

    Takaaki OKABE  Masahiro OKUDA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/05/26
      Vol:
    E100-D No:9
      Page(s):
    2253-2256

    The Retinex theory assumes that large intensity changes correspond to reflectance edges, while smoothly-varying regions are due to shading. Some algorithms based on the theory adopt simple thresholding schemes and achieve adequate results for reflectance estimation. In this paper, we present a practical reflectance estimation technique for hyperspectral images. Our method is realized simply by thresholding singular values of a matrix calculated from scaled pixel values. In the method, we estimate the reflectance image by measuring spectral similarity between two adjacent pixels. We demonstrate that our thresholding scheme effectively estimates the reflectance and outperforms the Retinex-based thresholding. In particular, our methods can precisely distinguish edges caused by reflectance change and shadows.

  • Variable-Length Coding with Cost Allowing Non-Vanishing Error Probability

    Hideki YAGI  Ryo NOMURA  

     
    PAPER-Information Theory

      Vol:
    E100-A No:8
      Page(s):
    1683-1692

    We consider fixed-to-variable length coding with a regular cost function by allowing the error probability up to any constantε. We first derive finite-length upper and lower bounds on the average codeword cost, which are used to derive general formulas of two kinds of minimum achievable rates. For a fixed-to-variable length code, we call the set of source sequences that can be decoded without error the dominant set of source sequences. For any two regular cost functions, it is revealed that the dominant set of source sequences for a code attaining the minimum achievable rate under a cost function is also the dominant set for a code attaining the minimum achievable rate under the other cost function. We also give general formulas of the second-order minimum achievable rates.

  • Self-Organized Beam Scheduling as an Enabler for Coexistence in 5G Unlicensed Bands Open Access

    Maziar NEKOVEE  Yinan QI  Yue WANG  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1181-1189

    In order to support user data rates of Gbps and above in the fifth generation (5G) communication systems, millimeter wave (mm-wave) communication is proposed as one of the most important enabling technologies. In this paper, we consider the spectrum bands shared by 5G cellular base stations (BS) and some existing networks, such as WiGig and proposed a method for spectrally efficient coexistence of multiple interfering BSs through adaptive self-organized beam scheduling. These BSs might use multiple radio access technologies belonging to multiple operators and are deployed in the unlicensed bands, such as 60GHz. Different from the recently emerging coexistence scenarios in the unlicensed 5GHz band, where the proposed methods are based on omni-directional transmission, beamforming needs to be employed in mm-wave bands to combat the high path loss problem. The proposed method is concerned with this new scenario of communication in the unlicensed bands where (a) beam-forming is mandatory to combat severe path loss, (b) without optimal scheduling of beams mutual interference could be severe due to the possibility of beam-collisions, (c) unlike LTE which users time-frequency resource blocks, a new resource, i.e., the beam direction, is used as mandatory feature. We propose in this paper a novel multi-RAT coexistence mechanism where neighbouring 5G BSs, each serving their own associated users, schedule their beam configurations in a self-organized manner such that their own utility function, e.g. spectral efficiency, is maximized. The problem is formulated as a combinatorial optimization problem and it is shown via simulations that our proposed distributed algorithms yield a comparable spectral efficiency for the entire networks as that using an exhaustive search, which requires global coordination among coexisting RATs and also has a much higher algorithmic complexity.

  • Fronthaul Constrained Coordinated Transmission in Cloud-Based 5G Radio Access Network: Energy Efficiency Perspective

    Ying SUN  Yang WANG  Yuqing ZHONG  

     
    PAPER-Network

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1343-1351

    The cloud radio access network (C-RAN) is embracing unprecedented popularity in the evolution of current RAN towards 5G. One of the essential benefits of C-RAN is facilitating cooperative transmission to enhance capacity and energy performances. In this paper, we argue that the conventional symmetric coordination in which all antennas participate in transmission does not necessarily lead to an energy efficient C-RAN. Further, the current assessments of energy consumption should be modified to match this shifted paradigm in network architecture. Towards this end, this paper proposes an asymmetric coordination scheme to optimize the energy efficiency of C-RAN. Specifically, asymmetric coordination is approximated and formulated as a joint antenna selection and power allocation problem, which is then solved by a proposed sequential-iterative algorithm. A modular power consumption model is also developed to convert the computational complexity of coordination into baseband power consumption. Simulations verify the performance benefits of our proposed asymmetric coordination in effectively enhancing system energy efficiency.

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.

  • A Near-Optimal Sensing Schedule for Spectrum Access in Multi-Hop Cognitive Radio Network

    Yun LI  Tohru ASAMI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/29
      Vol:
    E100-B No:7
      Page(s):
    1160-1171

    The present paper proposes a dynamic spectrum access policy for multi-hop cognitive radio networks (CRNs), where the transmission in each hop suffers a delay waiting for the communication channel to become available. Recognizing the energy constraints, we assume that each secondary user (SU) in the network is powered by a battery with finite initial energy. We develop an energy-efficient policy for CRNs using the Markov decision process, which searches for spectrum opportunities without a common communication channel and assigns each sensor's decision to every time slot. We first consider a single-sensor scenario. Due to the intermittent activation of the sensor, achieving the optimal sensing schedule requires excessive complexity and is computationally intractable, owing to the fact that the state space of the Markov decision process evolves exponentially with time variance. In order to overcome this difficulty, we propose a state-reduced suboptimal policy by relaxing the constrained state space, i.e., assuming that the electrical energy of a node is infinite, because this state-reduced suboptimal approach can substantially reduce the complexity of decision-making for CRNs. We then analyze the performance of the proposed policy and compare it with the optimal solution. Furthermore, we verify the performance of this spectrum access policy under real conditions in which the electrical energy of a node is finite. The proposed spectrum access policy uses the dynamic information of each channel. We prove that this schedule is a good approximation for the true optimal schedule, which is impractical to obtain. According to our theoretical analysis, the proposed policy has less complexity but comparable performance. It is proved that when the operating time of the CRN is sufficiently long, the data reception rate on the sink node side will converge to the optimal rate with probability 1. Based on the results for the single-sensor scenario, the proposed schedule is extended to a multi-hop CRN. The proposed schedule can achieve synchronization between transmitter and receiver without relying on a common control channel, and also has near-optimal performance. The performance of the proposed spectrum access policy is confirmed through simulation.

  • Adaptive Elastic Spectrum Allocation Based on Traffic Fluctuation Estimate under Time-Varying Traffic in Flexible OFDM-Based Optical Networks

    Mirai CHINO  Misato KAMIO  Jun MATSUMOTO  Eiji OKI  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2016/12/12
      Vol:
    E100-B No:6
      Page(s):
    962-973

    A flexible orthogonal frequency-division multiplexing optical network enables the bandwidth to be flexibly changed by changing the number of sub-carriers. We assume that users request to dynamically change the number of sub-carriers. Dynamic bandwidth changes allow the network resources to be used more efficiently but each change takes a significant amount of time to complete. Service centric resource allocation must be considered in terms of the waiting time needed to change the number of sub-carriers. If the user demands drastically increase such as just after a disaster, the waiting time due to a chain-change of bandwidth becomes excessive because disaster priority telephone services are time-critical. This paper proposes a Grouped-elastic spectrum allocation scheme to satisfy the tolerable waiting time of the service in an optical fiber link. Spectra are grouped to restrict a waiting time in the proposed scheme. In addition, the proposed scheme determines a bandwidth margin between neighbor spectra to spectra to prevent frequent reallocation by estimating real traffic behavior in each group. Numerical results show that the bandwidth requirements can be minimized while satisfying the waiting time constraints. Additionally measurement granularity and channel alignment are discussed.

  • Noise Estimation for Speech Enhancement Based on Quasi-Gaussian Distributed Power Spectrum Series by Radical Root Transformation

    Tian YE  Yasunari YOKOTA  

     
    PAPER-Information Theory

      Vol:
    E100-A No:6
      Page(s):
    1306-1314

    This contribution presents and analyzes the statistical regularity related to the noise power spectrum series and the speech spectrum series. It also undertakes a thorough inquiry of the quasi-Gaussian distributed power spectrum series obtained using the radical root transformation. Consequently, a noise-estimation algorithm is proposed for speech enhancement. This method is effective for separating the noise power spectrum from the noisy speech power spectrum. In contrast to standard noise-estimation algorithms, the proposed method requires no speech activity detector. It was confirmed to be conceptually simple and well suited to real-time implementations. Practical experiment tests indicated that our method is preferred over previous methods.

  • Bidirectional Vehicle-to-Vehicle Communication and Ranging Systems with Spread Spectrum Techniques Using Laser Radar and Visible Light

    Akira John SUZUKI  Kiyoshi MIZUI  

     
    PAPER-Intelligent Transport System

      Vol:
    E100-A No:5
      Page(s):
    1206-1214

    In autonomous vehicles, driving in traffic poses significant challenges in vehicle-to-vehicle (V2V) communication and ranging. Currently interest centers on enhanced V2V communication with multi-sensor and cooperative approaches. In this paper we propose a novel bidirectional Laser Radar Visible Light Bidirectional Communication Boomerang System (LRVLB-ComBo). LRVLB-ComBo affords nuanced real-time two-way V2V communication as a basis for complex but reliable decision-making. Our approach involves combining existing automotive laser radar with visible light boomerang systems using THSS techniques. System simulations were performed using a random mix of extraneous interference pulse to evaluate system sensitivity to noise. Results suggest that LRVLB-ComBo is a viable two-way V2V communication system with increased ranging accuracy, enabling provision of detailed bidirectional data exchange for ITS precision, energy efficiency and safety.

  • Optimizing Sensing Scheduling for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Tran-Nhut-Khai HOAN  Vu-Van HIEP  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    884-892

    In this paper, we consider optimal sensing scheduling for sequential cooperative spectrum sensing (SCSS) technique in cognitive radio networks (CRNs). Activities of primary users (PU) on a primary channel are captured by using a two states discrete time Markov chain process and a soft combination is considered at the FC. Based on the theory of optimal stopping, we propose an algorithm to optimize the cooperative sensing process in which the FC sequentially asks each CU to report its sensing result until the stopping condition that provides the maximum expected throughput for the CRN is satisfied. Simulation result shows that the performance of the proposed scheme can be improved by further shortening the reporting overhead and reducing the probability of false alarm in comparison to other schemes in literature. In addition, the collision ratio on the primary channel is also investigated.

  • Integration of Spatial Cue-Based Noise Reduction and Speech Model-Based Source Restoration for Real Time Speech Enhancement

    Tomoko KAWASE  Kenta NIWA  Masakiyo FUJIMOTO  Kazunori KOBAYASHI  Shoko ARAKI  Tomohiro NAKATANI  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1127-1136

    We propose a microphone array speech enhancement method that integrates spatial-cue-based source power spectral density (PSD) estimation and statistical speech model-based PSD estimation. The goal of this research was to clearly pick up target speech even in noisy environments such as crowded places, factories, and cars running at high speed. Beamforming with post-Wiener filtering is commonly used in many conventional studies on microphone-array noise reduction. For calculating a Wiener filter, speech/noise PSDs are essential, and they are estimated using spatial cues obtained from microphone observations. Assuming that the sound sources are sparse in the temporal-spatial domain, speech/noise PSDs may be estimated accurately. However, PSD estimation errors increase under circumstances beyond this assumption. In this study, we integrated speech models and PSD-estimation-in-beamspace method to correct speech/noise PSD estimation errors. The roughly estimated noise PSD was obtained frame-by-frame by analyzing spatial cues from array observations. By combining noise PSD with the statistical model of clean-speech, the relationships between the PSD of the observed signal and that of the target speech, hereafter called the observation model, could be described without pre-training. By exploiting Bayes' theorem, a Wiener filter is statistically generated from observation models. Experiments conducted to evaluate the proposed method showed that the signal-to-noise ratio and naturalness of the output speech signal were significantly better than that with conventional methods.

  • An Improved Perceptual MBSS Noise Reduction with an SNR-Based VAD for a Fully Operational Digital Hearing Aid

    Zhaoyang GUO  Xin'an WANG  Bo WANG  Shanshan YONG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/02/17
      Vol:
    E100-D No:5
      Page(s):
    1087-1096

    This paper first reviews the state-of-the-art noise reduction methods and points out their vulnerability in noise reduction performance and speech quality, especially under the low signal-noise ratios (SNR) environments. Then this paper presents an improved perceptual multiband spectral subtraction (MBSS) noise reduction algorithm (NRA) and a novel robust voice activity detection (VAD) based on the amended sub-band SNR. The proposed SNR-based VAD can considerably increase the accuracy of discrimination between noise and speech frame. The simulation results show that the proposed NRA has better segmental SNR (segSNR) and perceptual evaluation of speech quality (PESQ) performance than other noise reduction algorithms especially under low SNR environments. In addition, a fully operational digital hearing aid chip is designed and fabricated in the 0.13 µm CMOS process based on the proposed NRA. The final chip implementation shows that the whole chip dissipates 1.3 mA at the 1.2 V operation. The acoustic test result shows that the maximum output sound pressure level (OSPL) is 114.6 dB SPL, the equivalent input noise is 5.9 dB SPL, and the total harmonic distortion is 2.5%. So the proposed digital hearing aid chip is a promising candidate for high performance hearing-aid systems.

  • Performance Analysis of Distributed OSTBC-MIMO Systems Using Adaptive M-QAM Transmission over i.n.i.d. Generalized-K Fading Channels

    Jie HE  Kun XIAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/06
      Vol:
    E100-B No:5
      Page(s):
    843-851

    In this paper, the performance of orthogonal space-time block codes (OSTBC) for distributed multiple-input multiple-output (MIMO) systems employing adaptive M-QAM transmission is investigated over independent but not necessarily identically distributed (i.n.i.d.) generalized-K fading channels with arbitrary positive integer-valued k(inversely reflects the shadowing severity) and m (inversely reflects the fading severity). Before this, i.n.i.d. generalized-K fading channel has never been considered for distributed OSTBC-MIMO systems. Especially, the effects of the shape parameter k on the distributed OSTBC-MIMO system performance are unknown. Thus, we investigate mainly the significance of the shape parameter k on the distributed OSTBC-MIMO system performance, in terms of the average symbol error probability (SEP), outage probability, and spectral efficiency (SE). By establishing the system model, the approximated probability density function (PDF) of the equivalent signal to noise ratio (SNR) is derived and thereafter the approximated closed-form expressions of the above performance metrics are obtained successively. Finally, the derived expressions are validated via a set of Monte-Carlo simulations and the implications of the shape parameter k on the overall performance are highlighted.

141-160hit(1024hit)