The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

1361-1380hit(4624hit)

  • A Tone Compression Model for the Compensation of White Point Shift Generated from HDR Rendering

    Seok-Min CHAE  Sung-Hak LEE  Hyuk-Ju KWON  Kyu-Ik SOHNG  

     
    LETTER-Coding & Processing

      Vol:
    E95-A No:8
      Page(s):
    1297-1301

    Recently, a new image appearance model, named iCAM06, was developed for High-Dynamic-Range (HDR) image rendering. The dynamic range of a HDR image needs to be mapped onto the range of the output device where it will be displayed, this is called tone reproduction or tone mapping. iCAM06, a representative HDR rendering algorithm also uses tone compression for image reproduction on the dynamic range of output devices. However, iCAM06 causes a white point shift during its tone compression process. Therefore, we propose a compensation method for white point shifts using corrected channel gain. Experiment results show that the proposed method has better performance than iCAM06.

  • An Novel Message Transmission Delay Model for Disruption Tolerant Networking

    Jin QIAN  Dacheng LIU  Ye TAO  Xiangmin HUANG  Yong LI  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2661-2664

    The propagation of messages among a group of people, which forms opportunistic Disruption Tolerant Networking (DTN), can be modeled as dynamic graph with links joining every two nodes up and down at a stationary speed. As people in DTN might have different probabilities of sending messages to each other, they should be divided into distinct groups with different link generate speed λ and link perish speed µ. In this letter, we focus on the two-group case, and apply Edge-Markovian Dynamic Graphs to present an analysis framework to evaluate the average delay for the information dissemination in DTN. We also give extensive simulation and numerical results revealing the influence of various parameters.

  • A Session Type System with Subject Reduction

    Keigo IMAI  Shoji YUEN  Kiyoshi AGUSA  

     
    PAPER-Software System

      Vol:
    E95-D No:8
      Page(s):
    2053-2064

    Distributed applications and services have become pervasive in our society due to the widespread use of internet and mobile devices. There are urgent demands to efficiently ensure safety and correctness of such software. A session-type system is a framework to statically check whether communication descriptions conform to certain protocols. They are shown to be effective yet simple enough to fit in harmony with existing programming languages. In the original session type system, the subject reduction property does not hold. This paper establishes a conservative extension of the original session type system with the subject reduction property. Finally, it is also shown that our typing rule properly extends the set of typeable processes.

  • Multipath Routing Algorithm Applied to Cloud Data Center Services

    Hiroshi MATSUURA  

     
    PAPER

      Vol:
    E95-B No:8
      Page(s):
    2558-2567

    Cloud data center services, such as video on demand (VoD) and sensor data monitoring, have become popular. The quality of service (QoS) between a client and a cloud data center should be assured by satisfying each service's required bandwidth and delay. Multipath traffic engineering is effective for dispersing traffic flows on a network; therefore, an improved k-shortest paths first (k-SPF) algorithm is applied to these cloud data center services to satisfy their required QoS. k-SPF can create a set of multipaths between a cloud data center and all edge routers, to which client nodes are connected, within one algorithm process. Thus, k-SPF can produce k shortest simple paths between a cloud data center and every access router faster than with conventional Yen's algorithm. By using a parameter in the algorithm, k-SPF can also impartially use links on a network and shorten the average hop-count and number of necessary MPLS labels for multiple paths that comprise a multipath.

  • A Study of Stereoscopic Image Quality Assessment Model Corresponding to Disparate Quality of Left/Right Image for JPEG Coding

    Masaharu SATO  Yuukou HORITA  

     
    LETTER-Quality Metrics

      Vol:
    E95-A No:8
      Page(s):
    1264-1269

    Our research is focused on examining a stereoscopic quality assessment model for stereoscopic images with disparate quality in left and right images for glasses-free stereo vision. In this paper, we examine the objective assessment model of 3-D images, considering the difference in image quality between each view-point generated by the disparity-compensated coding. A overall stereoscopic image quality can be estimated by using only predicted values of left and right 2-D image qualities based on the MPEG-7 descriptor information without using any disparity information. As a result, the stereoscopic still image quality is assessed with high prediction accuracy with correlation coefficient=0.98 and average error=0.17.

  • A Dynamically Reconfigurable FPGA-Based Pattern Matching Hardware for Subclasses of Regular Expressions

    Yusaku KANETA  Shingo YOSHIZAWA  Shin-ichi MINATO  Hiroki ARIMURA  Yoshikazu MIYANAGA  

     
    PAPER-Computer System

      Vol:
    E95-D No:7
      Page(s):
    1847-1857

    In this paper, we propose a novel architecture for large-scale regular expression matching, called dynamically reconfigurable bit-parallel NFA architecture (Dynamic BP-NFA), which allows dynamic loading of regular expressions on-the-fly as well as efficient pattern matching for fast data streams. This is the first dynamically reconfigurable hardware with guaranteed performance for the class of extended patterns, which is a subclass of regular expressions consisting of union of characters and its repeat. This class allows operators such as character classes, gaps, optional characters, and bounded and unbounded repeats of character classes. The key to our architecture is the use of bit-parallel pattern matching approach, in which the information of an input non-deterministic finite automaton (NFA) is first compactly encoded in bit-masks stored in a collection of registers and block RAMs. Then, the NFA is efficiently simulated by a fixed circuitry using bitwise Boolean and arithmetic operations consuming one input character per clock regardless of the actual contents of an input text. Experimental results showed that our hardwares for both string and extended patterns were comparable to previous dynamically reconfigurable hardwares in their performances.

  • Accurate Image Expansion Method Using Range Points Based Ellipse Fitting for UWB Imaging Radar

    Yoriaki ABE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:7
      Page(s):
    2424-2432

    Ultra-wideband (UWB) pulse radars have a definite advantage in high-range resolution imaging, and are suitable for short-range measurements, particularly at disaster sites or security scenes where optical sensors are rarely suitable because of dust or strong backlighting. Although we have already proposed an accurate imaging algorithm called Range Points Migration (RPM), its reconstructible area is too small to identify the shape of an object if it is far from the radar and the size of the aperture is inadequate. To resolve this problem, this paper proposes a novel image expansion method based on ellipse extrapolation; it enhances extrapolation accuracy by deriving direct estimates of the observed range points distributed in the data space. Numerical validation shows that the proposed method accurately extrapolates part of the target boundary, even if an extremely small region of the target boundary is obtained by RPM.

  • Resonant-Mode Characteristics of a New Three-Mode Hybrid Microstrip/Slotline Resonator and Novel Realization of Compact Bandpass Filter with Four Transmission Zeros

    Masataka OHIRA  Zhewang MA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1203-1210

    This paper proposes a new three-mode resonator, which consists of a parallel-coupled microstrip line resonator embedded with a slotline resonator, and develops a compact low-loss bandpass filter (BPF) with a sharp roll-off response because of four transmission zeros (TZ) located very near the passband. Resonance mechanism and properties of the three modes are first analyzed by using an eigen-mode analysis, and then an equivalent circuit model is established for expressing a novel coupling scheme of the developed BPF. It is made clear from the results of circuit analysis that the four TZs are produced because of multiple paths between the input/output stub lines formed by the three resonant modes and the direct source/load coupling. The validity of the proposed resonator and filter is supported by the comparison between simulated and measured results.

  • A 0.5-V, 0.05-to-3.2 GHz LC-Based Clock Generator for Substituting Ring Oscillators under Low-Voltage Condition

    Wei DENG  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:7
      Page(s):
    1285-1296

    This paper investigates a clock frequency generator for ultra-low-voltage sub-picosecond-jitter clock generation in future 0.5-V LSI and power aware LSI. To address the potential possible solution for ultra-low-voltage applications, a 0.5 V clock frequency generator is proposed and implemented. Significant performances, in terms of sub 1-ps jitter, 50 MHz-to-6.4 GHz frequency tuning range with 2 bands and sub 1-mW PDC, demonstrated the viable replacement of ring oscillators in low-voltage and low-jitter clock generator.

  • DISWOP: A Novel Scheduling Algorithm for Data-Intensive Workflow Optimizations

    Yuyu YUAN  Chuanyi LIU  Jie CHENG  Xiaoliang WANG  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E95-D No:7
      Page(s):
    1839-1846

    Execution performance is critical for large-scale and data-intensive workflows. This paper proposes DISWOP, a novel scheduling algorithm for data-intensive workflow optimizations; it consists of three main steps: workflow process generation, task & resource mapping, and task clustering. To evaluate the effectiveness and efficiency of DISWOP, a comparison evaluation of different workflows is conducted a prototype workflow platform. The results show that DISWOP can speed up execution performance by about 1.6-2.3 times depending on the task scale.

  • Suppression of Polarization Dependent Loss by Using a Single Birefringent Fiber for Low-Coherence Signal

    Mitsuhiro TATEDA  Kei OZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:7
      Page(s):
    2302-2305

    Some optical components have polarization dependent loss (PDL), which degrades the performance of optical measurement systems. Various PDL suppression methods have been proposd, most of them have rather complicated structures. In this paper we propose a new simple method for PDL suppression, in which a single birefringent element is concatenated to a PDL device with their birefringent axes offset by π/4. The effectiveness of the proposed method is verified by experiments, that is, polarization dependent loss variation amplitude V of a device relative to its average loss is reduced from 90% to 2% by using a 2 m long PANDA fiber for an LED light source whose central wavelength λ0 and spectral width Δλ are 847 nm and 55 nm, respectively. Furthermore, for an SLD light source with λ0=1539 nm and Δλ=71 nm, V as much as 80% is reduced to 2% by using the same PANDA fiber.

  • ML Frame Synchronization for OFDM Systems Using a Known Pilot and Cyclic Prefixes

    Heon HUH  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:7
      Page(s):
    2296-2301

    Orthogonal frequency-division multiplexing (OFDM) is a popular air interface technology that is adopted as a standard modulation scheme for 4G communication systems owing to its excellent spectral efficiency. For OFDM systems, synchronization problems have received much attention along with peak-to-average power ratio (PAPR) reduction. In addition to frequency offset estimation, frame synchronization is a challenging problem that must be solved to achieve optimal system performance. In this paper, we present a maximum likelihood (ML) frame synchronizer for OFDM systems. The synchronizer exploits a synchronization word and cyclic prefixes together to improve the synchronization performance. Numerical results show that the performance of the proposed frame synchronizer is better than that of conventional schemes. The proposed synchronizer can be used as a reference for evaluating the performance of other suboptimal frame synchronizers. We also modify the proposed frame synchronizer to reduce the implementation complexity and propose a near-ML synchronizer for time-varying fading channels.

  • Efficient LUT-Based Truncated Multiplier and Its Application in RGB to YCbCr Color Space Conversion

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:6
      Page(s):
    999-1006

    High performance, low area multipliers are highly desired for modern and future DSP systems due to the increasing demand of high speed DSP applications. In this paper, we present an efficient architecture for an LUT-based truncated multiplier and its application in RGB to YCbCr color space conversion which can be used for digital TV, image and video processing systems. By employing an improved split LUT-based architecture and LUT optimization method, the proposed multiplier can reduce the value of area-delay product by up to 52% compared with other constant multiplier methods. The FPGA implementation of a color space conversion application employing the proposed multiplier also results in significant reduction of area-delay product of up to 48%.

  • EMI Camera LSI (EMcam) with On-Chip Loop Antenna Matrix to Measure EMI Noise Spectrum and Distribution

    Naoki MASUNAGA  Koichi ISHIDA  Takayasu SAKURAI  Makoto TAKAMIYA  

     
    PAPER

      Vol:
    E95-C No:6
      Page(s):
    1059-1066

    This paper presents a new type of electromagnetic interference (EMI) measurement system. An EMI Camera LSI (EMcam) with a 124 on-chip 25050 µm2 loop antenna matrix in 65 nm CMOS is developed. EMcam achieves both the 2D electric scanning and 60 µm-level spatial precision. The down-conversion architecture increases the bandwidth of EMcam and enables the measurement of EMI spectrum up to 3.3 GHz. The shared IF-block scheme is proposed to relax both the increase of power and area penalty, which are inherent issues of the matrix measurement. The power and the area are reduced by 74% and 73%, respectively. EMI measurement with the smallest 3212 µm2 antenna to date is also demonstrated.

  • Extended Darknet: Multi-Dimensional Internet Threat Monitoring System

    Akihiro SHIMODA  Tatsuya MORI  Shigeki GOTO  

     
    PAPER

      Vol:
    E95-B No:6
      Page(s):
    1915-1923

    Internet threats caused by botnets/worms are one of the most important security issues to be addressed. Darknet, also called a dark IP address space, is one of the best solutions for monitoring anomalous packets sent by malicious software. However, since darknet is deployed only on an inactive IP address space, it is an inefficient way for monitoring a working network that has a considerable number of active IP addresses. The present paper addresses this problem. We propose a scalable, light-weight malicious packet monitoring system based on a multi-dimensional IP/port analysis. Our system significantly extends the monitoring scope of darknet. In order to extend the capacity of darknet, our approach leverages the active IP address space without affecting legitimate traffic. Multi-dimensional monitoring enables the monitoring of TCP ports with firewalls enabled on each of the IP addresses. We focus on delays of TCP syn/ack responses in the traffic. We locate syn/ack delayed packets and forward them to sensors or honeypots for further analysis. We also propose a policy-based flow classification and forwarding mechanism and develop a prototype of a monitoring system that implements our proposed architecture. We deploy our system on a campus network and perform several experiments for the evaluation of our system. We verify that our system can cover 89% of the IP addresses while darknet-based monitoring only covers 46%. On our campus network, our system monitors twice as many IP addresses as darknet.

  • An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    Shoichiro SENO  Eiichi HORIUCHI  Sota YOSHIDA  Takashi SUGIHARA  Kiyoshi ONOHARA  Misato KAMEI  Yoshimasa BABA  Kazuo KUBO  Takashi MIZUOCHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:6
      Page(s):
    1997-2004

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24 km and 360 km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  • A Direct Inter-Mode Selection Algorithm for P-Frames in Fast H.264/AVC Transcoding

    Bin SONG  Haixiao LIU  Hao QIN  Jie QIN  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E95-B No:6
      Page(s):
    2101-2108

    A direct inter-mode selection algorithm for P-frames in fast homogeneous H.264/AVC bit-rate reduction transcoding is proposed in this paper. To achieve the direct inter-mode selection, we firstly develop a low-complexity distortion estimation method for fast transcoding, in which the distortion is directly calculated from the decoded residual together with the reference frames. We also present a linear estimation method to approximate the coding rate. With the estimated distortion and rate, the rate-distortion cost can be easily computed in the transcoder. In our algorithm, a method based on the normalized rate difference of P-frames (RP) is used to detect the high motion scene. To achieve fast transcoding, only for the P-frames with RP larger than a threshold, the rate-distortion optimized (RDO) mode decision is performed; meanwhile, the average cost of each inter-mode (ACM) is calculated. Then for the subsequent frames transcoding, the optimal coding mode can be directly selected using the estimated cost and the ACM threshold. Experiments show that the proposed method can significantly simplify the complex RDO mode decision, and achieve transcoding time reductions of up to 62% with small loss of rate-distortion performance.

  • Symmetric Extension DFT-Based Noise Variance Estimator in OFDMA Systems with Partial Frequency Response

    Yi WANG  Qianbin CHEN  Ken LONG  Zu Fan ZHANG  Hong TANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2157-2159

    A simple DFT-based noise variance estimator for orthogonal frequency division multiplexing access (OFDMA) systems is proposed. The conventional DFT-based estimator differentiates the channel impulse response and noise in the time domain. However, for partial frequency response, its time domain signal will leak to all taps due to the windowing effect. The noise and channel leakage power become mixed. In order to accurately derive the noise power, we propose a novel symmetric extension method to reduce the channel leakage power. This method is based on the improved signal continuity at the boundaries introduced by symmetric extension. Numerical results show that the normalized mean square error (NMSE) of our proposed method is significantly lower than that of the conventional DFT method.

  • An Adaptive Multi-Range-Sensing Method for 3D Localization of Passive RFID Tags

    Tomotaka WADA  Toshihiro HORI  Manato FUJIMOTO  Kouichi MUTSUURA  Hiromi OKADA  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E95-A No:6
      Page(s):
    1074-1083

    The RFID tag system has received a lot of attention for ubiquitous computing. An RFID tag is attached to an object. With the unique ID of the RFID tag, a user identifies the object provided with the RFID tag and derives appropriate information about the object. One important application in the RFID technology is localizing RFID tags, which can be very useful in acquiring the position information concerning the RFID tags. It can be applied to navigation systems and positional detection systems for mobile robots. This paper proposes a new adaptive multi-range-sensing method for 3D localization of passive RFID tags by using a probabilistic approach. In this method, a mobile object (human, robot, etc.) with an RFID reader estimates the positions of RFID tags with multiple communication ranges dynamically. The effectiveness of the proposed method was demonstrated in experiments.

  • Basis Vector Estimation Analysis for Identification of Block Orthogonal Modulations

    Takafumi KINUGASA  Ikuo OKA  Shingo ATA  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:5
      Page(s):
    1882-1885

    Cognitive radios are intelligent communications, and are expected to more efficiently utilize the radio channel. Modulation identification is one of the key issues in the cognitive radios. Many works were devoted to the classification of symbol-by-symbol modulations, however, few papers on block modulations have been published. In this paper, an identification error analysis is presented for block orthogonal modulations using General Orthogonal Modulation~(GOM). A symbol error probability is derived for the identified block orthogonal modulation. Numerical results of 4-dimensional block orthogonal modulation are presented with simulation results.

1361-1380hit(4624hit)